
L1: Intro to Computer Systems:
Complexity

Robert Morris and Frans Kaashoek

6.033 Spring 2009
http://web.mit.edu/6.033

http://web.mit.edu/6.033

•  Schedule has all assignments
•  Every meeting has preparation/assignment
•  First deliverable is due Tuesday
•  Read the Therac paper for Friday

•  Return sign-up sheet at the end of lecture (if
you didn’t do so yesterday)
•  We will post sections assignment tonight

What is a system?
hidden

•  6.033 is about the design of s/w systems.
•  System = [diagram]

•  Inside vs outside
•  achieve specific external behavior
•  many components

•  Examples: Bank ATMs, Web
•  Much of 6.033 will operate at design level

•  Relationships of components
•  Internals of components that help structure

Problem: Complexity
hidden

• Hard to define; symptoms:
• Large # of components
• Large # of connections
•  Irregular
• No short description
• Many people required to design/maintain

•  Technology rarely the limit!
•  Indeed tech opportunity is the problem
• Limit is usually designers’ understanding

6.033 Approach
hidden

•  Lectures/book: big ideas, technology, examples
•  Recitations: papers, discussion

•  Design examples
•  Writing examples: core prob/soln vs detail
•  Learn how to read a paper, skim vs meat

•  Design projects: practice designing and writing
•  Design: choose problem, tradeoffs, structure
•  Writing: explain core ideas concisely

•  Exams: focus on reasoning about system design
•  Ex-6.033 students: papers and recitations

Example 6.033 Readings

Therac-25
UNIX
Ethernet
End-to-End Arguments
System R

Papers
hidden

•  ONE SENTENCE EACH
•  Therac: bad design, at many levels. detailed post-mortem.
•  UNIX: successful “New Jersey” design. small, careful choice of

problems to solve.
•  Ethernet: elegant, beat competition, scaled by 3000x!
•  End-to-end: captures a non-obvious and very useful

philosophical point.
•  System R: huge influence on construction of fault-tolerant

systems – recovery from crash at any point.

Problem Types
hidden

•  Emergent properties
•  surprises

•  Propagation of effects
• Small change -> big effect

•  [Incommensurate] scaling
• Design for small model may not scale

Lessons
hidden, running

•  Expect surprises
•  There is no small change
•  10x increase ⇒ perhaps re-design
•  Just one more feature!
•  Complexity is super-linear
•  Performance cost is super-linear

Emergent Property Example:
Ethernet

•  All computers share single cable
• Goal is reliable delivery
•  Listen before send to avoid collisions
• Will listen-while-send detect collisions?
 Maximum cable length!
 Minimum packet size!

Propagation of Effects Example
(L. Cole 1969)

•  WHO attempted to control malaria in North Borneo
•  Sprayed villages with DDT
•  Wiped out mosquitoes, but ….

•  Roaches collected DDT in tissue
•  Lizards ate roaches and became slower
•  Easy target for cats
•  Cats didn’t deal with DDT well and died
•  Forest rats moved into villages
•  Rats carried the bacillus for the plague

 WHO replaced malaria with the plague

Galileo in 1638

“To illustrate briefly, I have sketched a bone whose natural length has been
increased three times and whose thickness has been multiplied until, for a
correspondingly large animal, it would perform the same function which the
small bone performs for its small animal. From the figures here shown you
can see how out of proportion the enlarged bone appears. Clearly then if
one wishes to maintain in a great giant the same proportion of limb as that
found in an ordinary man he must either find a harder and stronger material
for making the bones, or he must admit a diminution of strength in
comparison with men of medium stature; for if his height be increased
inordinately he will fall and be crushed under his own weight. Whereas, if
the size of a body be diminished, the strength of that body is not diminished
in the same proportion; indeed the smaller the body the greater its relative
strength. Thus a small dog could probably carry on his back two or three
dogs of his own size; but I believe that a horse could not carry even one of
his own size.” [Dialog Concerning Two New Sciences, 2nd Day]

Incommensurate scaling

•  Scaling a mouse into an elephant
•  Volume ~ O(x3) where x is a linear measure
•  Bone strength ~ cross section ~ O(x2)
•  [Haldane, “On being the right size”, 1928]

•  Scaling Ethernet’s bit-rate
•  10 mbit/s: min packet 64 bytes, max cable 2.5 km
•  100: 64 bytes, 0.25 km
•  1,000: 512 bytes, 0.25 km
•  10,000: no shared cable

•  Scaling the Internet
•  39 sites in 1973
•  Total size of tables (for shortest paths): O(n2)

Sources of Complexity
hidden

• Many goals/requirements
•  Interaction of features
•  Performance

Example: more goals,
more complexity

•  1975 Unix kernel: 10,500 lines of code
•  2008 Linux 2.6.24 line counts:

 85,000 processes
 430,000 sound drivers
 490,000 network protocols
 710,000 file systems
1,000,000 different CPU architectures
4,000,000 drivers
7,800,000 Total

Example: interacting features,
more complexity

•  Call Forwarding
•  Call Number Delivery Blocking
•  Automatic Call Back
•  Itemized Billing

A C

??

A B

CNDB ACB + IB •  A calls B, B is busy
•  Once B is done, B

calls A
•  A’s number on

appears on B’s bill

CF CF

Interacting Features
hidden

•  Each feature has a spec.
•  An interaction is bad if feature X breaks feature Y.
•  ...
•  The point is not that these bad interactions can’t be fixed.
•  The point is that there are so many interactions that have to

be considered: they are a huge source of complexity.
•  Perhaps more than n^2 interactions, e.g. triples.
•  Cost of thinking about / fixing interaction gradually grows to

dominate s/w costs.
•  The point: Complexity is super-linear

Example: single rail
hidden

•  Performance -> complexity
•  One track in a narrow canyon [diagram]
•  Base design: alternate trains

•  Low throughput, high delay
•  Worse than two-track, cheaper than blasting

•  Lower delay w/ a siding and two trains
•  Precise schedule
•  Risk of collision / signal lights
•  Siding limits train length (a global effect!)

•  Point: performance cost super-linear

Coping with Complexity
hidden

•  Simplifying insights / experience
•  Modularity

•  Split up system, consider separately
•  Abstraction

•  Interfaces/hiding, e.g. standard size windows
•  Helps avoid propagation of effects

•  Hierarchy
•  Reduce connections
•  Divide-and-conquer

•  Layering
•  Gradually build up capabilities

Class plan

• Next lecture: computer systems are different
• Naming: gluing modules together
•  Client/server: enforced modularity
• Networks: hard boundaries between modules
•  Reliability and transactions: handing failures
•  Security: handling malicious failures

