6.033 Spring 2015
Lecture #4

* QOperating systems
* Virtual memory
* OS abstractions

Katrina LaCurts | lacurts@mit | 6.033 2015



Lingering Problem

Client| «<— | internet Server

_load(amazon, com/buy.htmi ?fishtank)
Z,

what if we don't want our modules to be on entirely
separate machines”? how can we enforce
modularity on a single machine”

Katrina LaCurts | lacurts@mit | 6.033 2015



operating systems: enforce
modularity on a single machine via
virtualization

Katrina LaCurts | lacurts@mit | 6.033 2015



Enforcing Modularity via Virtualization

in order to enforce modularity + build an effective operating system

1. programs shouldn’t be able to refer to

(and corrupt) each others’ memory —

2. programs should be able to ; assume that they

communicate don't need to
(for today)

3. programs should be able to share a assume one program
CPU without one program halting the —l per CPU
progress of the others (for today)

today’s goal: so that programs cannot refer

to each others’ memory
Katrina LaCurts | lacurts@mit | 6.033 2015



Single Program

CPU main memory

for (55) o
next instruction
} instructions

Katrina LaCurts | lacurts@mit | 6.033 2015



Single Program

CPU main memory
232-1

instruction pointer

EIP

instructions

Katrina LaCurts | lacurts@mit | 6.033 2015



Multiple Programs

CPU; (used by program) main memory
232-1

instructions
program;

for (55) {

next instruction

}

instructions for
CPU;> (used by programy) program,

for (55) {

next instruction data for program;

}

data for program;

Katrina LaCurts | lacurts@mit | 6.033 2015



Multiple Programs

CPU; (used by program) main memory
232-1

instructions for

EIP program;
31 )
instructions for
CPU;> (used by programy) program,
EIP data for program
31 )

data for program;

problem: no boundaries

Katrina LaCurts | lacurts@mit | 6.033 2015



Solution: Virtualize Memory

virtual physica|
CPU, (usedbyprogrami) MMU address memory
232-1 2321
instructions for
virtual physical program;
address address
5 data for program;
232-1

instructions for
program;

. data for program;
MMU uses programs+'s table to translate ™. 0

the virtual address to a physical address

AR » | table for program;

table for program;

main memory
Katrina LaCurts | lacurts@mit | 6.033 2015



Storing the Mapping

naive method: store every mapping; virtual address acts as
an index into the table

OxX00000000 »Oxbe26dc9

OxX00000001 »|OXCcO90T81C

OX00000002 »1Oxb762a572 | |232 entries
OxX00000003 »1O0x5dcc90ee

32 bits per entry
= 16GB to store the table

Katrina LaCurts | lacurts@mit | 6.033 2015



Storing the Mapping

space-efficient mapping: map to IN memory

one page is (typically) 212 bits of memory.

232-12 = P20 entries

32 bIts™ per entry
= 4MB to store the table

*you'll see why it's not 20 bits in a second

Katrina LaCurts | lacurts@mit | 6.033 2015



Using Page Tables

CPU 1 (used by programs) MMU

[ 0x00002148 0x00002148 —0x00004148 | ° "
31 )

table for programj

: 0X00002 .

(top 20 bits) - 0x00003
%

offset: 0x148 %gif% BXx00000

(bottom 12 bits) %@..,A 0x00004

phySicaI page number: 9x00004 OxX00005

(exists in main memory)

Katrina LaCurts | lacurts@mit | 6.033 2015



Page lable Entries

page table entries are 32 bits because they contain a 20-bit
physical page number and 12 bits of additional information

31 12 11 0

physical page number .IIIIII I

s the page currently in DRAM?

read/write (R/W) bit: is the program allowed to write
to this address?

user/supervisor (U/S) bit: does the program have
access to this address?

Katrina LaCurts | lacurts@mit | 6.033 2015



kernel manages page faults and
other interrupts

Katrina LaCurts | lacurts@mit | 6.033 2015



operating systems: enforce
modularity on a single machine via
virtualization and abstraction

Katrina LaCurts | lacurts@mit | 6.033 2015



* Operating systems
Operating systems enforce modularity on a single
machine via virtualization and abstraction

* Virtual memory
Virtualizing memory prevents programs from referring
to (and corrupting) each other's memory. The MMU
translates virtual addresses to physical addresses
using page tables

* OS abstractions
The OS presents abstractions for devices via system
calls, which are implemented with interrupts. Using
Interrupts means the kernel directly accesses the
devices, not the user

Katrina LaCurts | lacurts@mit | 6.033 2015



