
Katrina LaCurts | lacurts@mit | 6.033 2015

6.033 Spring 2015!
Lecture #1

• Complexity
• Modularity and abstraction
• Enforced modularity via client/server models

Katrina LaCurts | lacurts@mit | 6.033 2015

http://mit.edu/6.033

Schedule

Fill out form for recitation assignments
link on home page

http://mit.edu/6.033

Katrina LaCurts | lacurts@mit | 6.033 2015

what is a system?
a set of interconnected components that has an

expected behavior observed at the interface with its
environment

Katrina LaCurts | lacurts@mit | 6.033 2015

6.033 Approach to Systems

lectures: big ideas + examples
 Katrina LaCurts, Hari Balakrishnan

recitations: read papers describing successful systems
 Arvind, Mark Day, Dina Katabi, Sam Madden, Martin Rinard,  
 Karen Sollins, Peter Szolovits

hands-ons: play with successful systems

design project: practice designing and writing
 TAs: Ellen Finch, David Goehring, Ameesh Goyal, Webb Horn, 
 Qian Long, Manali Naik, Andrew Nguyen, Amy Ousterhout, Cong Yan
 Writing staff: Jared Berezin, Amy Carleton, Amelia Herb, Nora Jackson,  
 Janis Melvold, Juergen Schoenstein, Jessie Stickgold-Sarah, 
 Linda Sutliff, Michael Trice

exams: reasoning about system design

Katrina LaCurts | lacurts@mit | 6.033 2015

what is a system?
a set of interconnected components that has an

expected behavior observed at the interface with its
environment

what makes building systems
difficult?

complexity

Katrina LaCurts | lacurts@mit | 6.033 2015

Pacemaker

Space Shuttle

Android

Linux Kernel

Large Hadron Collider

Windows Vista

Facebook

 0 10 20 30 40 50 60 70
Millions of Lines of Code

source:(http://www.informationisbeautiful.net/visualizations/million8lines8of8code/

Today’s Systems are Incredibly Complex

Katrina LaCurts | lacurts@mit | 6.033 2015

110101001001001001011000110110101

Emergent Properties
(ethernet example)

00110101001111110111A B

Katrina LaCurts | lacurts@mit | 6.033 2015

10010110

Emergent Properties
(ethernet example)

A B

collision not detected!

for collision-detection to work, endpoints must send
for at least twice the latency of the link

Katrina LaCurts | lacurts@mit | 6.033 2015

Emergent Properties
(ethernet example)

A B
3Mbps(link,(5μsec(latency

experimental ethernet: 3Mbps link, 5μsec
latency, 40-bit packet headers

=>(minimum8packet(size(of(30#bits(
(((for(collision(detection(to(work

Katrina LaCurts | lacurts@mit | 6.033 2015

Emergent Properties
(ethernet example)

A B
10Mbps(link,(12.5μsec(latency

first ethernet standard: 10Mbps link, 12.5μsec
latency, 112-bit packet headers

=>(minimum8packet(size(of(250#bits(
(((for(collision(detection(to(work

minimum packet size was an emergent property of ethernet

Katrina LaCurts | lacurts@mit | 6.033 2015

Katrina LaCurts | lacurts@mit | 6.033 2015

http://www.caida.org/research/topology/as_core_network/2014/

Katrina LaCurts | lacurts@mit | 6.033 2015

how can we mitigate complexity?

Katrina LaCurts | lacurts@mit | 6.033 2015

how do we enforce modularity?

Katrina LaCurts | lacurts@mit | 6.033 2015

Stub Clients and RPCs
Class#webBrowser

(on machine 1)
Class#webServer

(on machine 2)

((def(main():(
((((html(=(browser_load_url(URL)(
((((...

((def(browser_load_url(url):(
((((msg(=(url(#(could(reformat(
!!!!send!request!
!!!!wait!for!reply!
((((html(=(reply(#(could(reformat(
((((return(html

((def(server_load_url():(
((((...(
((((return(html

((def(handle_server_load_url(url):(
!!!!wait!for!request!
((((url(=(request(
((((html(=(server_load_url(URL)(
((((reply(=(html(
!!!!send!replystub stub

request

reply

Katrina LaCurts | lacurts@mit | 6.033 2015

Challenges with RPCs

Client Serverinternet

load(“buy.html?item&ccNo=xxx”)

X
load(“buy.html?item&ccNo=xxx”)

Katrina LaCurts | lacurts@mit | 6.033 2015

Challenges with RPCs

Client Serverinternet

load(“buy.html”)

X
load(“buy.html”)

client(|(UID(|(reply

state on server

replay results from table
instead of reprocessing

order

problem: server can still fail

Katrina LaCurts | lacurts@mit | 6.033 2015

• Complexity  
 Comes from many sources, limits what we can build,  
 causes unforeseen issues; can be mitigated with  
 modularity and abstraction 

• Enforced modularity  
 One way to enforce modularity is with a client/server  
 model, where the two modules reside on different  
 machines and communicate with RPCs; network/  
 server failures are still an issue

next lecture: naming, which allows modules to  
 communicate

subsequent lectures: operating systems, which provide  
 modularity on a single machine

