
Lecture 17: Logging

Hari Balakrishnan
6.033 Spring 2015

Based on Section 9.3 and some
material from Sam Madden

Transaction example

xfer(F, T, amt):
 PUT(F, GET(F) – amt)

 PUT(T, GET(T) + amt)

GET(x) – read value of x from store (database)
PUT(x,v) – write v to x in store (database)

tid = BEGIN_TRANSACTION
 xfer(from, to, amount)
 if read(from) < 0:
 print “Not enough funds”
 ABORT
 else:
 COMMIT “Do it all”

Assumption for today

No concurrent transactions

Focus on crash recovery and
ABORT to implement all-or-
nothing atomicity and
durability for transactions

9979

PUT(debit_account, $120)

newer log records

action_id:
redo_action:

undo_action:

CHANGEtype:
9974

COMMITTED

action_id:
status:

OUTCOMEtype:
9979

PUT(credit_account, $40)

PUT(credit_account, $10)

action_id:
redo_action:

undo_action:

CHANGEtype:

older log records

…
PUT(debit_account, $90)

new: 90

old: 120

new: 40

old: 10

Log
Append-only data structure: NEVER OVERWRITE OR ERASE!

tid: tid: tid:

tid : “transaction identifier”, aka “action identifier”

GET (read) with just the log

GET(x): # global log
 commits = { }

 for record r in log[len(log)-1] .. log[0]:
 if (r.status == COMMITTED):
 commits = commits + r.tid
 if (r.type == CHANGE) and
 (r.tid in commits) and
 (r.var == x):
 return r.new_val

GET (read) your own PUTs (writes)
GET(x):
 commits = { }

 for record r in reversed(log): # backward scan
 if (r.status == COMMITTED):
 commits = commits + r.tid
 if (r.type == CHANGE) and
 (r.tid in commits or r.tid=cur_tid) and
 (r.var == x):
 return r.new_val

+ Crash recovery is fast! Don’t have to do anything
+ PUTs are fast! Just append to log
- GETs are SLOW: have to scan log backwards

Cell Storage + Log

WRITE_NEW_VALUE

Log
Journal Storage

Cell

log
install

Storage

READ_CURRENT_VALUE

current
end of log

Append-only data structure: NEVER OVERWRITE OR ERASE!

Read / write with cell storage
GET(x):
 return cell_read(var)

PUT(x, value):

 old_x = GET(x)
 cell_write(x, value)
 log.append(tid, CHANGE,
 x, old=old_x, new=value)

WRONG!

PUT(x, value):
 log.append(tid, CHANGE,
 x, old=read(x), new=value)
 cell_write(x, value)

LOG TO STABLE STORAGE FIRST
WRITE-AHEAD LOGGING (WAL)

1. Volatile cell writes (in-mem DB)
Recovering cell storage from log

recover(log):
 done = { }
 for record r in reversed(log): # backward scan
 if r.status== COMMITTED:
 winners = winners + r.tid
 for record r in log: # forward scan
 if r.type == CHANGE and r.tid in winners:
 cell_write(r.var, r.new_val) # redo

2. Non-volatile cell writes:
Recovering cell storage from log
recover(log):

 winners = { }
 for record r in reversed(log): # backward scan
 if r.status== COMMITTED:
 winners = winners + r.tid
 if r.type == CHANGE and r.tid not in winners:
 cell_write(r.var, r.old_val) # undo

3. Cached read / write

GET(x):
 if x not in cache:

 # may evict another from cache to cell store
 cache[x] = cell_read(x)

 return cache[x]

PUT(x, value):

 log.append(cur_tid, CHANGE,
 x, old=read(x), new=value)
 # may evict another from cache to cell store
 cache[x] = value

3. Recovery for cached database

recover(log):
 done = { }
 for record r in reversed(log): # backward scan
 if r.type == COMMITTED:
 done = done + r.tid
 if r.type == CHANGE and r.tid not in done:
 cell_write(r.var, r.old_val) # undo

 for record r in log: # forward scan
 if r.type == CHANGE and r.tid in done:
 cell_write(r.var, r.new_val) # redo

Abort (all three cases)

abort(): # ABORT current transaction, cur_tid
 for record r in reversed(log)
 if (r.tid == cur_tid)
 if r.type == CHANGE:
 PUT(r.var, r.old_val) # undo
 if r.type == BEGIN
 break
 log.append(cur_tid, ABORTED) # optional
 # to avoid undo’ing an already-aborted transaction

