Lecture 17: Logging

Hari Balakrishnan
6. 033 Spring 2015

o s N T 0
1t's the wmtmq tnat
Kills our industry...

‘Q\v‘é

\ & . ..\ii'w,’

A

iy
/)),

i, %

v :
% /‘"“"w// N’; 2
Wy "y
MY,y

\\\\\\

&\\\\\\\\WW\ = ;

Based on Section 9.3 and some
material from Sam Madden

Transaction example

GET(x) — read value of x from store (database)
PUT(x,v) — write v to x in store (database)

xfer(F, T, amt):
PUT(F, GET(F) — amt)
PUT(T, GET(T) + amt)

tid = BEGIN_TRANSACTION
xfer(from, to, amount)
if read(from) < O:
print “Not enough funds”
ABORT
else:
COMMIT “Do it all”

Assumption for today

No concurrent transactions

Focus on crash recovery and
ABORT to implement all-or-
nothing atomicity and
durability for transactions

Log

Append-only data structure: NEVER OVERWRITE OR ERASE!

type: CHANGE
tid: 9979

redo_action: new: 90
PUT(debit_account, $90)

undo_action: old: 120
PUT(debit_account, $120)

type: OUTCOME
tid: 9974
status: COMMITTED

type: CHANGE
tid: 9979

redo_action: NeWw. 40
PUT(credit_account, $40)

undo_action:old: 10
PUT(credit_account, $10)

<—older log records

newer log records —>

tid : “transaction identifier’, aka “action identifier”

GET (read) with just the log

GET(x): # global log
commits = { }
for record r in log[len(log)-1] .. log[O]:
if (r.status == COMMITTED):
commits = commits + r.tid
if (r.type == CHANGE) and
(r.tid in commits) and
(r.var == Xx):
return r.new_val

GET (read) your own PUTs (writes)

GET(x):
commits = { }
for record r in reversed(log): # backward scan
if (r.status == COMMITTED):
commits = commits + r.tid
if (r.type == CHANGE) and
(r.tid in commits or r.tid=cur _tid) and
(r.var == X):
return r.new_val

+ Crash recovery is fast! Don’t have to do anything
+ PUTs are fast! Just append to log
- GETs are SLOW: have to scan log backwards

Cell Storage + Log

Append-only data structure: NEVER OVERWRITE OR ERASE!

Log

[,

WRITE_NEW_VALUE

log

= 4

=

Cell
Storage

install

N
A

L

N

current
end of log

READ__CURRENT_VALUE

Read / write with cell storage

GET(x):
return cell read(var)

PUT(x, value):
old x = GET(x)
cell _write(x, value) WRONG!
log.append(tid, CHANGE,

X, old=old_x, new=value)

WRITE-AHEAD LOGGING (WAL)

PUT(X, value): LOG TO STABLE STORAGE FIRST
log.append(tid, CHANGE,
X, old=read(x), new=value)
cell _write(x, value)

1. Volatile cell writes (in-mem DB)
Recovering cell storage from log

recover(log):
done ={}
for record r in reversed(log): # backward scan
if r.status== COMMITTED:
winners = winners + r.tid
for record r in log: # forward scan
if r.type == CHANGE and r.tid in winners:
cell _write(r.var, rrnew _val) # redo

2. Non-volatile cell writes:
Recovering cell storage from log

recover(log):
winners = {}
for record r in reversed(log): # backward scan
if r.status== COMMITTED:
winners = winners + r.tid
if r.type == CHANGE and r.tid not in winners:
cell_write(r.var, r.old val) # undo

3. Cached read / write

GET(x):
If X not in cache:
may evict another from cache to cell store
cache[x] = cell read(x)
return cache[x]

PUT(x, value):
log.append(cur_tid, CHANGE,
X, old=read(x), new=value)
may evict another from cache to cell store
cache[x] = value

3. Recovery for cached database

recover(log):
done ={}
for record r in reversed(log): # backward scan
if r.type == COMMITTED:
done = done + r.tid
if r.type == CHANGE and r.tid not in done:
cell _write(r.var, r.old val) # undo

for record r in log: # forward scan
iIf r.type == CHANGE and r.tid in done:
cell _write(r.var, rrnew_val) # redo

Abort (all three cases)

abort(): # ABORT current transaction, cur_tid
for record r in reversed(log)
if (r.tid == cur_tid)
if r.type == CHANGE:
PUT(r.var, r.old_val) # undo
if r.type == BEGIN
break
log.append(cur_tid, ABORTED) # optional

to avoid undo Ing an already-aborted transaction

