6.033 Spring 2015 Design Project
Ambient Sensing for the MIT Campus

Last update: 4/20/2015, 2:00pm — See Errata for details
Also check out the list of Frequently Asked Questions (last updated 4/22/2015, 2:15pm)

0. Due Dates and Deliverables

There are three deliverables for this design project.

1. A proposal not exceeding 2000 words, due on March 20, 2015 at 5:00pm.

2. A 10-to-15-minute oral presentation given to your recitation instructor, to be scheduled
with your recitation instructor, for some time between April 13, 2015 and April 23,
2015. The oral presentation will assess your progress and provide some feedback
prior to your final report submission.

3. A design report not exceeding 5000 words, due on May 8, 2015 at 5:00pm

Each deliverable will have specific guidelines, which will be linked above.

The proposal and final report should be submitted via the online submission site. As with
real-life system designs, 6.033 design projects are under-specified, and it is your job to
complete the specification in a sensible way given the stated requirements of the project. As
with designs in practice, the specifications often need some adjustment as the design is
fleshed out. Moreover, requirements will likely be added or modified as time goes on. We
recommend that you start early so that you can evolve your design over time. A good design
is likely to take more than just a few days to develop. A good design will avoid unnecessary
complexity and be as modular as possible, to enable it to evolve to changing requirements.

Late submission grading policy: If you submit any deliverable late, we will penalize you one
letter grade per 48 hours, starting from 5 pm on the submission day. For example, if you
submit the report anywhere from 1 minute to 48 hours late, and your report would have
otherwise received a grade of "A", you will receive a "B"; if you submitted 49 hours late, you
will receive a "C".

You must work in teams of three for this project. All three people on a team must have the
same recitation instructor (you may team up with people from either of your instructor's
sections). Note that although this is a team project, some of the deliverables have individual
components. See the individual assignment links (above) for more information.

http://mit.edu/6.033/www/assignments/dp_errata.pdf
http://mit.edu/6.033/www/assignments/dp_faq.pdf
http://web.mit.edu/6.033/www/assignments/dp_proposal.pdf
http://mit.edu/6.033/www/assignments/dp_presentation.pdf
http://web.mit.edu/6.033/www/assignments/dp_report.pdf

1. Introduction

Over the past few years, small hardware devices that combine computation, communication,
and sensing have become inexpensive, thanks to advances in miniaturization, low-power
design, and radio communication. Several thousand such battery-operated sensors can now
be deployed in the buildings on the MIT campus at modest cost to help us understand the
campus environment.

Many companies now sell such sensors: some examples are shown below.

1l

* UE):LJ
i —
eve room eve weather eve water
e})
eve dooréwindow eve smoke eve energy
Temperature (Nordic Semi) Humidity (BeeWi) Building sensors (Eve)

MIT facilities is in the final stages of procuring many such sensor nodes to monitor buildings
on campus and build a campus-wide ambient sensing system. Some sensors record
temperature, some record humidity, some detect water leaks, some record light intensity,
some record vibrations, some detect smoke, some detect carbon monoxide, and so on. They
will be attached to walls or placed in other suitable locations in rooms or corridors.

Sensor beacon on a wall (Estimote)

The sensor node includes a programmable general-purpose processor, some memory (64
kbytes RAM and 64 kbytes ROM), flash storage (8 Mbytes), a real-time clock, a low-power
radio for communication, and the sensor itself. A sensor’s reading contains a 32-bit timestamp
and a 16-bit value. The communication technology uses a low-power radio with an
energy-efficient link-layer protocol and a low communication range, called Bluetooth Smart

(aka Bluetooth Low Energy, or BLE). It is now widely available on many devices; the appendix
has some details about how it works.

Facilities is interested in the following uses of a campus-wide sensor-node deployment:

1. Archiving: For each deployed sensor, the Facilities Central Server (FCS) should
obtain a timestamped sequence of sensor readings to maintain a historical record for
various kinds of analyses over the data. The system should be able to identify the
location (MIT room number for rooms or a suitable location for places like the Infinite
Corridor, such as “Infinite Corridor, Building 3, 1st Floor”), so that applications can bind
any given sensor’s data to a human-understandable location on campus.

2. Anomaly detection: Sensor nodes implement simple rules, specified and configured
from the FCS by a building administrator, to proactively identify anomalous conditions
in their sensor data. The goal is to communicate these conditions to the FCS as
promptly as possible (given the communication constraints specified below; the
opportunity for real-time synchronous communication is rare).

3. User reports of issues: Allow users to report problems via a mobile app running on
their phone (or tablet or laptop), using a mobile to capture data from sensors to
provide detailed evidence. For example, allowing users to report “my room is too cold”.

4. User retrieval of archived information: Allow a user with authorization (established
via MIT certificates) to retrieve archived information about public spaces as well as
locations for which they are authorized (e.g., a student’s dorm room, a staff member’s
office, etc.).

One approach to supporting these uses is by installing BLE access points all over campus to
allow the sensor nodes to communicate with the FCS. Given the size of the MIT campus and
the communication range of the BLE radios (about 10-20 meters in this system), Facilities has
concluded that their budget does not permit setting up a dedicated infrastructure of
BLE-equipped access points: it’s just too expensive to purchase and maintain.

Fortunately, popular smartphone and tablet devices running iOS and Android now support
BLE. For example, all iPhones 4S and later running iOS 7.0+, as well as many Android
devices running Android 4.3 or later support BLE. Facilities estimates that almost all
smartphones and tablets used by MIT students and staff will soon have BLE (if they don’t
already). They plan to use the mobile devices belonging to participating MIT users as mobile
gateways, illustrated below. When a mobile device comes within BLE communication range
of a sensor node, a background application running on the mobile device attempts to retrieve
data from the sensor node to deliver to the FCS. As people walk around campus, they help
collect data and also help the FCS issue directives to the sensor nodes. For less-populated
parts of the campus, mobile devices carried by Facilities personnel and the janitorial staff
provide coverage.

1. BLE sensor
collects data

3. Mobile devices send
the data to FCS

I::'LE sensor —— internet — FCS
in building

person with
mobile device

2. Mobile devices in range of
sensor retrieve its data

The Institute Committee on Identifying Hot Things in Freezing Places (aka IHTFP) has
decided to form the IHTFP Task Force to design a system for campus-wide ambient sensing
with the following elements:

1.

Mobile devices as data gateways: The “gateways” that allow the sensor nodes to
communicate with the FCS are the mobile devices carried by users. A user chooses to
participate in the system by installing a mobile app on their device. The app is capable
of operating in the background, listening for advertisement messages periodically
broadcast by the sensor nodes. Such advertisement messages, or beacons, are a
standard part of the BLE protocol; they include a 128-bit region identifier, a 16-bit
major id, and a 16-bit minor id. You can set these three fields to anything you want for
each beacon. The mobile app (described below) will be woken up by the mobile
device’s operating system when it comes within range of a specified region identifier,
you may assume here that when the app is in the background, this wake-up will occur
between 1 and 60 seconds after the device comes within range, but in best-effort
fashion. Some useful details about BLE are in the appendix. The phone can search
for at most 64 different region identifiers at a time.

Mobile app: When a user is close to a sensor node, the mobile device’s operating
system may wake the app up to run in the background, allowing the app to connect to
the sensor node via a reliable BLE connection. To simplify the software on the sensor
node, the sensor node maintains at most one active connection with a mobile device
at any time. When connected, your design should decide whether you want a sensor
node to broadcast advertisements or suppress them.

When connected, the app and sensor node communicate over a protocol (which you
must design) to retrieve data from the sensor node. In addition, the app may issue
directives (originating from the FCS) to the sensor node over a protocol (which you
must design). Examples of such commands include changing the configuration of the

node to set the threshold value above or below which the sensor node considers its
readings anomalous, and to set the periodicity at which the node’s sensor takes
readings.

3. Network protocol: The system’s network protocol should permit the FCS to
communicate with the sensor nodes via the mobile app. It should include the methods
used to communicate between the mobile app and the sensor nodes, as well as the
FCS and the mobile app.

4. User queries: When run in the foreground, the app’s user interface allows a user to
retrieve sensor data for a specified time range for (1) any public space and (2) any
space for which the user is authorized. The authorization uses MIT certificates; you
may assume that the set of private spaces authorized for the user is specified in the
certificate.

5. Sensor processing and storage management: Each sensor node wakes up
periodically (some every second, some every few seconds) and records a reading
along with the current time (from the real-time clock). Each sensor node has a certain
amount of Flash storage, about 8 Megabytes. It should be used to store sensor data in
a well-defined way, and the system must incorporate methods to manage this storage
while supporting queries from the app to retrieve data and send it to the server.

6. FCS data model: To support queries from Facilities personnel and MIT users, and to
allow Facilities administrators to maintain the configuration of the different sensor
nodes, the system must implement a data model that specifies what data should be
stored in databases or files on the FCS. These queries include:

a. For a specified location, for a specified time range, for a specified sensor type,
return the time-series of values archived, or an aggregate over those values
(average, standard deviation, count, X" percentile).

b. Aggregate queries over a portion of a building, or over an entire building, or
over a part of campus, such as the average temperature over a specified time
range, or the average temperature during weekends, or the average
temperature over a specified time-of-day range (say, midnight to 6 am) over a
sequence of days.

c. Which sensors on campus (or a specified location) have reported anomalous
behavior over a specified time range?

The IHTFP Task Force has decided to enlist 6.033 (i.e., you!) to design this system. Your
design should specify the queries supported by your system and show how your system’s
data model supports them. The richer the set of supported queries, the better, but use your
judgement to avoid excessive complexity.

Assumptions

You may assume that the user’s mobile device and app are trusted and will not maliciously
attempt to tamper with or suppress data or configuration information. You may also assume

that the system supports “over-the-air” reprogramming of the sensor nodes using a method
supplied to you.

You may not assume that a user’s mobile device is always connected to the network. A user
may turn their phone off, lose service, etc., at any time.

The intended scale of the system is the entire MIT campus. MIT Facilities is responsible for
158 buildings covering a total indoor area of 12 million square feet. You may assume the
average density of sensor nodes is one every 120 square feet.

Assume that each sensor’s data is recorded using a 32-bit timestamp (accurate to 1 second)
and a 16-bit value.

Please note that the specifications provided here are not necessarily complete. You may ask
questions of the staff to understand the requirements better. If you need to make any
assumptions not stated in this document, please state them, and if necessary, briefly justify
why they are reasonable.

As is customary in many real-world projects, it is likely that new requirements will emerge
after you have started working on your design. A good design will have the modularity and
simplicity to accommodate mid-course changes.

Additional Requirements

Since the start of this project, experiments have shown that the clocks on the sensor nodes
drift and are not accurate. The IHTFP Task Force has added the requirement that the system
should use the phone and/or FCS to set the sensor node's clock whenever possible.

Furthermore, the task force has requested an additional feature: Any mobile device in the
vicinity of a sensor should be able to retrieve the most recent value recorded by the sensor, if
one is available, and show it to the user on request regardless of authorization.

If you are unable to design a system that meets these additional requirements, your design

report (and presentation) should explain what parts of your system break down in the face of
these requirements and how.

2. Your Job
Your job is to design the system described above.

Design Considerations

While designing the system, you should consider the following questions:

Naming: how should each sensor’s region, major and minor IDs be named? How
would you support location-specific queries?

Sensor node query interface: What query interface to retrieve data does your system
support? Bear in mind that your goal isn’t to build a database on the sensor node, but
primarily to ensure that as much of the sensor’s stored data gets delivered to the FCS.
How will the system detect and handle duplicate pieces of data that may be delivered
by multiple phones?

How can the system attempt to ensure that all logged data is delivered to the FCS?
Note that the delivery of all data is not a strict requirement, but your system should
attempt to reduce the amount of data missing.

How can the system ensure that anomalies are prioritized over non-anomalous data
meant for the historical record?

How will the sensors decide when to remove data from its local storage? What should
a sensor do when new data is logged? (As a general rule, we expect older data to be
less useful or valuable than new data, unless the old data has recorded an anomaly
and that has not been delivered successfully to the FCS.)

The IHTFP task force would like each sensor node to last four years or more before its
battery runs out and the node needs to be replaced. The appendix below defines the
sensor node’s power consumption parameters. Your design should propose (via
calculation) a battery capacity for each sensor node (in milliAmp-hours, mAh) to
achieve this four-year lifetime goal. As a practical matter, the battery capacity ought to
be under 1600 mAh.

Bear in mind that there is an energy cost on the sensor node to initiating and
maintaining a connection from the mobile device to the sensor node. The energy cost
on the mobile device is small and may be ignored, but you should prevent bugs or
malicious behavior of a mobile device to drain the battery of a sensor node down. For
example, if you’re in your room for 8 hours, remaining connected continuously is a bad
idea. Think about how you would design the duration and periodicity of connections to
achieve the desired sensor node lifetime (and you get to pick a battery capacity as
well). Your solution should incorporate appropriate mobile device behavior, but should
not assume that all mobile devices are correctly implemented (i.e., a sensor node
should defend itself from running its battery down too fast).

Mobile devices like smartphones and tablets also have sensors: can you think of ways
in which you can use a smartphone’s sensors to augment the information from the
sensor nodes that might help your system or provide new features? If so, what
sensors would you use, and what are the trade-offs in using them? One example
might be position sensors, but unlike GPS outdoors, indoor location on mobile devices
today isn’t too accurate. You can get building-level accuracy and accuracy to within a
couple of floors of a building, but no better than that reliably.

Should the server infrastructure identify users' mobile devices when they are used to
deliver data? Or, would you treat them as anonymous devices? What are the
trade-offs between these choices?

e How does your system support the addition of new sensors to the infrastructure? You
may assume that all sensor nodes are added only by facilities personnel.

e How would your system identify whether a sensor has been moved around to another
location? You may assume that people don’t maliciously move these around, but that
a small fraction of them may be moved accidentally.
How would your system identify malfunctioning sensors?
How would you entice or incentivize MIT users to participate in your system?
Using mobile phones as a key part of the system means that it will be important to
have something that's easily evolved, ported, or reimplemented as those platforms
evolve. Your design should minimize complexity of the mobile device components,
keeping this in mind.

Components of the Design

Your design should describe how the following four components are designed, how they
interact with each other to accomplish the six elements described above, and how they
address the considerations laid out above.

1. Sensor node software: The software in the sensor node that keeps track of its data
and eventually communicates with a participating mobile device.

2. Communication protocols between:

o the FCS and the sensor nodes (by which we mean the message format and
what the fields mean): note that these communications are done via the mobile
device, but the end-to-end message semantics are between the FCS and the
sensor nodes

o the mobile device and the sensor node (by which we mean the “query” protocol
between the mobile device and sensor node to retrieve data, and the
‘command” protocol to configure new thresholds or change other aspects of the
sensor node’s operation). The messages that phones use to connect to the
sensors are defined by the BLE spec, but it is up to you to define the sensors
beaconing behavior as well as how it responds to phones initiating connections.

o the mobile app and the FCS (the message format used by the mobile app to
send data to the FCS and receive data from it)?

3. The FCS software: the way in which it stores data (files, databases, etc.), its interface
to the mobile app, its communication with the sensor nodes, its handling of sensor
data arriving via the mobile app, and its interface to facilities administrators to
configure sensor nodes.

4. The mobile app: what are its components and modules? What does it do in the
background and what does it do in the foreground? What data does it store and how
does it help the FCS and sensor nodes communicate with each other?

Extensions to the Design

If your design is complete and you are looking for an extra challenge, then extend it to support
the scenario when the mobile device is not trusted. What damage could a malicious mobile
device or mobile user cause? How would you overcome these problems?

Appendix: BLE

BLE is a low-power communication protocol. For the purposes of this project, on average, the
radios have a range of about 30 meters (100 feet). BLE is a point-to-point protocol between a
peripheral and a central node. In the envisioned system, the sensor node is the peripheral
and the mobile device is the central node. The peripheral advertises its existence periodically
using beacons, which include a 128-bit service identifier, a 16-bit major identifier, and a 16-bit
minor identifier. To ensure a sufficient battery life, the sensors are configured to broadcast
their advertisements once per second. The mobile devices initiate connections to the sensor
nodes; the sensor nodes cannot. As mentioned earlier, at most one active connection can be
active at a time on a sensor node, but the mobile device may have hundreds of BLE
connections active concurrently.

Before installing a sensor node, the system administrator may configure the three fields of its
advertisement to whatever your design suggests. You may assume that there is no error
made here. In practice, the Each sensor node has a 48-bit globally-unique identifier set by the
factory that makes the hardware device (this identifier is not part of the advertisement).

BLE uses short data packets, up to 20 bytes in size. The details of the link-layer protocol are
not relevant for this project, but it does not guarantee perfect reliability. As a user walks
around, the link-layer protocol allows for a data rate of 4 kbytes/s.

Sensor node energy considerations: The sensor node runs on a 3 Volt battery. When
advertising at 1 Hz, the average current drawn is 25 pA, measured over the entire second. It
takes 2 seconds for the mobile device to establish a connection after the mobile devices
initiates one, after which it can transmit at the BLE data rate of 4 kbytes/s until it disconnects.
During the connection setup, as well as when a connection is active and transmitting data, the
current drawn is 1 mA (1000 pA). Most of the power consumed by a sensor nodes is from
BLE communication; you may assume that the rest of the processing and sensing consumes
negligible power (this assumption is realistic).

