
PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 514 #37

514 CHAPTER 6 Congestion control and resource allocation

The HighSpeed TCP proposal, now an experimental RFC, makes TCP

more aggressive only when it is clearly operating in a very high bandwidth-

delay product environment and not competing with a lot of other traffic.

In essence, when the congestion window gets very large, HighSpeed TCP

starts to increaseCongestionWindow by a larger amount that standard TCP.

In the normal environment where CongestionWindow is relatively small

(about 40 × MSS), HighSpeed TCP is indistinguishable from standard TCP.

Many other proposals have been made in this vein, some of which are listed

in the Further Reading section. Notably, the default TCP behavior in the

Linux operating system is now based on a TCP variant called CUBIC, which

also expands the congestion window aggressively in high bandwidth-delay

product regimes, while maintaining compatibility with older TCP variants in

more bandwidth-constrained environments.

The Quick-Start proposal, which changes the start-up behavior of TCP,

was mentioned above. Since it can enable a TCP connection to ramp up

its sending rate more quickly, its effect on TCP performance is most notice-

able when connections are short, or when an application periodically stops

sending data and TCP would otherwise return to slow start.

Yet another proposal, FAST TCP, takes an approach similar to TCP Vegas

described in the next section. The basic idea is to anticipate the onset of

congestion and avoid it, thereby not taking the performance hit associated

with decreasing the congestion window.

Several proposals that involve more dramatic changes to TCP or even

replace it with a new protocol have been developed. These have consid-

erable potential to fill the pipe quickly and fairly in high bandwidth-delay

environments, but they also face higher deployment challenges. We refer

the reader to the end of this chapter for references to ongoing work in

this area.

6.4 CONGESTION-AVOIDANCEMECHANISMS

It is important to understand that TCP’s strategy is to control conges-

tion once it happens, as opposed to trying to avoid congestion in the first

place. In fact, TCP repeatedly increases the load it imposes on the network

in an effort to find the point at which congestion occurs, and then it backs

off from this point. Said another way, TCP needs to create losses to find the

available bandwidth of the connection. An appealing alternative, but one

that has not yet been widely adopted, is to predict when congestion is

about to happen and then to reduce the rate at which hosts send data just

before packets start being discarded. We call such a strategy congestion

avoidance, to distinguish it from congestion control.



PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 515 #38

6.4 Congestion-avoidance mechanisms 515

This section describes three different congestion-avoidance mecha-

nisms. The first two take a similar approach: They put a small amount of

additional functionality into the router to assist the end node in the antic-

ipation of congestion. The third mechanism is very different from the first

two: It attempts to avoid congestion purely from the end nodes.

6.4.1 DECbit

The first mechanism was developed for use on the Digital Network Archi-

tecture (DNA), a connectionless network with a connection-oriented

transport protocol. This mechanism could, therefore, also be applied to

TCP and IP. As noted above, the idea here is to more evenly split the

responsibility for congestion control between the routers and the end

nodes. Each router monitors the load it is experiencing and explicitly noti-

fies the end nodes when congestion is about to occur. This notification is

implemented by setting a binary congestion bit in the packets that flow

through the router, hence the name DECbit. The destination host then

copies this congestion bit into the ACK it sends back to the source. Finally,

the source adjusts its sending rate so as to avoid congestion. The follow-

ing discussion describes the algorithm in more detail, starting with what

happens in the router.

A single congestion bit is added to the packet header. A router sets

this bit in a packet if its average queue length is greater than or equal

to 1 at the time the packet arrives. This average queue length is mea-

sured over a time interval that spans the last busy + idle cycle, plus the

current busy cycle. (The router is busy when it is transmitting and idle

when it is not.) Figure 6.14 shows the queue length at a router as a func-

tion of time. Essentially, the router calculates the area under the curve

and divides this value by the time interval to compute the average queue

length. Using a queue length of 1 as the trigger for setting the congestion

bit is a trade-off between significant queuing (and hence higher through-

put) and increased idle time (and hence lower delay). In other words, a

queue length of 1 seems to optimize the power function.

Now turning our attention to the host half of the mechanism, the

source records how many of its packets resulted in some router setting

the congestion bit. In particular, the source maintains a congestion win-

dow, just as in TCP, and watches to see what fraction of the last window’s

worth of packets resulted in the bit being set. If less than 50% of the pack-

ets had the bit set, then the source increases its congestion window by



PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 516 #39

516 CHAPTER 6 Congestion control and resource allocation

Queue length

Current

time

Time

Current

cycle

Previous

cycle

Averaging

interval

n FIGURE 6.14 Computing average queue length at a router.

one packet. If 50% or more of the last window’s worth of packets had the

congestion bit set, then the source decreases its congestion window to

0.875 times the previous value. The value 50% was chosen as the threshold

based on analysis that showed it to correspond to the peak of the power

curve. The “increase by 1, decrease by 0.875” rule was selected because

additive increase/multiplicative decrease makes the mechanism stable.

6.4.2 Random Early Detection (RED)

A second mechanism, called random early detection (RED), is similar to

the DECbit scheme in that each router is programmed to monitor its own

queue length and, when it detects that congestion is imminent, to notify

the source to adjust its congestion window. RED, invented by Sally Floyd

and Van Jacobson in the early 1990s, differs from the DECbit scheme in

two major ways.

The first is that rather than explicitly sending a congestion notification

message to the source, RED is most commonly implemented such that it

implicitly notifies the source of congestion by dropping one of its packets.

The source is, therefore, effectively notified by the subsequent timeout or

duplicate ACK. In case you haven’t already guessed, RED is designed to

be used in conjunction with TCP, which currently detects congestion by

means of timeouts (or some other means of detecting packet loss such

as duplicate ACKs). As the “early” part of the RED acronym suggests, the

gateway drops the packet earlier than it would have to, so as to notify the



PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 517 #40

6.4 Congestion-avoidance mechanisms 517

source that it should decrease its congestion window sooner than it would

normally have. In other words, the router drops a few packets before it has

exhausted its buffer space completely, so as to cause the source to slow

down, with the hope that this will mean it does not have to drop lots of

packets later on. Note that RED could easily be adapted to work with an

explicit feedback scheme simply by marking a packet instead of dropping

it, as discussed in the sidebar on Explicit Congestion Notification.

Explicit Congestion Notification (ECN)

While current deployments of RED almost always signal congestion by drop-

ping packets, there has recently been much attention given to whether

or not explicit notification is a better strategy. This has led to an effort to

standardize ECN for the Internet.

The basic argument is that while dropping a packet certainly acts as a

signal of congestion, and is probably the right thing to do for long-lived bulk

transfers, doing so hurts applications that are sensitive to the delay or loss of

one or more packets. Interactive traffic such as telnet and web browsing are

prime examples. Learning of congestion through explicit notification ismore

appropriate for such applications.

Technically, ECN requires two bits; the proposed standard uses bits 6 and

7 in the IP type of service (TOS) field. One is set by the source to indicate

that it is ECN capable; that is, it is able to react to a congestion notification.

The other is set by routers along the end-to-end path when congestion is

encountered. The latter bit is also echoed back to the source by the destina-

tion host. TCP running on the source responds to the ECN bit set in exactly

the same way it responds to a dropped packet.

As with any good idea, this recent focus on ECN has caused people to

stop and think about other ways inwhich networks can benefit from an ECN-

style exchange of information between hosts at the edge of the networks

and routers in the middle of the network, piggybacked on data packets. The

general strategy is sometimes called active queue management, and recent

research seems to indicate that it is particularly valuable to TCP flows that

have large delay-bandwidth products. The interested reader can pursue the

relevant references given at the end of the chapter.

The second difference between RED and DECbit is in the details of

how RED decides when to drop a packet and what packet it decides to

drop. To understand the basic idea, consider a simple FIFO queue. Rather

than wait for the queue to become completely full and then be forced to

drop each arriving packet (the tail drop policy of Section 6.2.1), we could



PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 518 #41

518 CHAPTER 6 Congestion control and resource allocation

decide to drop each arriving packet with some drop probability whenever

the queue length exceeds some drop level. This idea is called early random

drop. The RED algorithm defines the details of how to monitor the queue

length and when to drop a packet.

In the following paragraphs, we describe the RED algorithm as orig-

inally proposed by Floyd and Jacobson. We note that several modifi-

cations have since been proposed both by the inventors and by other

researchers; some of these are discussed in Further Reading. However,

the key ideas are the same as those presented below, and most current

implementations are close to the algorithm that follows.

First, RED computes an average queue length using a weighted run-

ning average similar to the one used in the original TCP timeout compu-

tation. That is, AvgLen is computed as

AvgLen = (1−Weight)×AvgLen + Weight×SampleLen

where 0 < Weight < 1 and SampleLen is the length of the queue when

a sample measurement is made. In most software implementations, the

queue length is measured every time a new packet arrives at the gateway.

In hardware, it might be calculated at some fixed sampling interval.

The reason for using an average queue length rather than an instan-

taneous one is that it more accurately captures the notion of congestion.

Because of the bursty nature of Internet traffic, queues can become full

very quickly and then become empty again. If a queue is spending most

of its time empty, then it’s probably not appropriate to conclude that the

router is congested and to tell the hosts to slow down. Thus, the weighted

running average calculation tries to detect long-lived congestion, as indi-

cated in the right-hand portion of Figure 6.15, by filtering out short-term

changes in the queue length. You can think of the running average as a

low-pass filter, where Weight determines the time constant of the filter.

The question of how we pick this time constant is discussed below.

Second, RED has two queue length thresholds that trigger certain

activity: MinThreshold and MaxThreshold. When a packet arrives at the

gateway, RED compares the current AvgLen with these two thresholds,

according to the following rules:

if AvgLen ≤ MinThreshold

→ queue the packet



PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 519 #42

6.4 Congestion-avoidance mechanisms 519

if MinThreshold < AvgLen < MaxThreshold

→ calculate probability P

→ drop the arriving packet with probability P

if MaxThreshold ≤ AvgLen

→ drop the arriving packet

If the average queue length is smaller than the lower threshold, no action

is taken, and if the average queue length is larger than the upper thresh-

old, then the packet is always dropped. If the average queue length is

between the two thresholds, then the newly arriving packet is dropped

with some probability P. This situation is depicted in Figure 6.16. The

approximate relationship between P and AvgLen is shown in Figure 6.17.

Note that the probability of drop increases slowly when AvgLen is

between the two thresholds, reaching MaxP at the upper threshold, at

which point it jumps to unity. The rationale behind this is that, if AvgLen

reaches the upper threshold, then the gentle approach (dropping a few

packets) is not working and drastic measures are called for: dropping

all arriving packets. Some research has suggested that a smoother tran-

sition from random dropping to complete dropping, rather than the

discontinuous approach shown here, may be appropriate.

Although Figure 6.17 shows the probability of drop as a function only

of AvgLen, the situation is actually a little more complicated. In fact, P is

Queue length

Instantaneous

Average

Time

n FIGURE 6.15 Weighted running average queue length.



PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 520 #43

520 CHAPTER 6 Congestion control and resource allocation

MaxThreshold

AvgLen

MinThreshold

n FIGURE 6.16 RED thresholds on a FIFO queue.

P(drop)

1.0

MaxP

MinThresh

AvgLen

MaxThresh

n FIGURE 6.17 Drop probability function for RED.

a function of both AvgLen and how long it has been since the last packet

was dropped. Specifically, it is computed as follows:

TempP = MaxP× (AvgLen−MinThreshold)/(MaxThreshold−MinThreshold)

P = TempP/(1− count×TempP)

TempP is the variable that is plotted on the y-axis in Figure 6.17, count

keeps track of how many newly arriving packets have been queued (not

dropped), and AvgLen has been between the two thresholds. P increases

slowly as count increases, thereby making a drop increasingly likely as the

time since the last drop increases. This makes closely spaced drops rela-

tively less likely than widely spaced drops. This extra step in calculating P

was introduced by the inventors of RED when they observed that, without



PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 521 #44

6.4 Congestion-avoidance mechanisms 521

it, the packet drops were not well distributed in time but instead tended

to occur in clusters. Because packet arrivals from a certain connection are

likely to arrive in bursts, this clustering of drops is likely to cause multiple

drops in a single connection. This is not desirable, since only one drop

per round-trip time is enough to cause a connection to reduce its window

size, whereas multiple drops might send it back into slow start.

As an example, suppose that we set MaxP to 0.02 and count is ini-

tialized to zero. If the average queue length were halfway between the

two thresholds, then TempP, and the initial value of P, would be half of

MaxP, or 0.01. An arriving packet, of course, has a 99 in 100 chance of

getting into the queue at this point. With each successive packet that

is not dropped, P slowly increases, and by the time 50 packets have

arrived without a drop, P would have doubled to 0.02. In the unlikely

event that 99 packets arrived without loss, P reaches 1, guaranteeing that

the next packet is dropped. The important thing about this part of the

algorithm is that it ensures a roughly even distribution of drops over

time.

The intent is that, if RED drops a small percentage of packets when

AvgLen exceeds MinThreshold, this will cause a few TCP connections to

reduce their window sizes, which in turn will reduce the rate at which

packets arrive at the router. All going well, AvgLen will then decrease

and congestion is avoided. The queue length can be kept short, while

throughput remains high since few packets are dropped.

Note that, because RED is operating on a queue length averaged over

time, it is possible for the instantaneous queue length to be much longer

than AvgLen. In this case, if a packet arrives and there is nowhere to put

it, then it will have to be dropped. When this happens, RED is operating

in tail drop mode. One of the goals of RED is to prevent tail drop behavior

if possible.

The random nature of RED confers an interesting property on the algo-

rithm. Because RED drops packets randomly, the probability that RED

decides to drop a particular flow’s packet(s) is roughly proportional to the

share of the bandwidth that that flow is currently getting at that router.

This is because a flow that is sending a relatively large number of packets

is providing more candidates for random dropping. Thus, there is some

sense of fair resource allocation built into RED, although it is by no means

precise.



PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 522 #45

522 CHAPTER 6 Congestion control and resource allocation

Note that a fair amount of analysis has gone into setting the various RED

parameters—for example, MaxThreshold, MinThreshold, MaxP, and Weight—

all in the name of optimizing the power function (throughput-to-delay ratio). The

performance of these parameters has also been confirmed through simulation,

and the algorithm has been shown not to be overly sensitive to them. It is impor-

tant to keep in mind, however, that all of this analysis and simulation hinges on

a particular characterization of the network workload. The real contribution of

RED is a mechanism by which the router can more accurately manage its queue

length. Defining precisely what constitutes an optimal queue length depends on

the traffic mix and is still a subject of research, with real information now being

gathered from operational deployment of RED in the Internet.

Consider the setting of the two thresholds, MinThreshold and Max-

Threshold. If the traffic is fairly bursty, then MinThreshold should be suffi-

ciently large to allow the link utilization to be maintained at an acceptably

high level. Also, the difference between the two thresholds should be

larger than the typical increase in the calculated average queue length

in one RTT. Setting MaxThreshold to twice MinThreshold seems to be a

reasonable rule of thumb given the traffic mix on today’s Internet. In

addition, since we expect the average queue length to hover between the

two thresholds during periods of high load, there should be enough free

buffer space above MaxThreshold to absorb the natural bursts that occur

in Internet traffic without forcing the router to enter tail drop mode.

We noted above that Weight determines the time constant for the run-

ning average low-pass filter, and this gives us a clue as to how we might

pick a suitable value for it. Recall that RED is trying to send signals to

TCP flows by dropping packets during times of congestion. Suppose that

a router drops a packet from some TCP connection and then imme-

diately forwards some more packets from the same connection. When

those packets arrive at the receiver, it starts sending duplicate ACKs to

the sender. When the sender sees enough duplicate ACKs, it will reduce

its window size. So, from the time the router drops a packet until the

time when the same router starts to see some relief from the affected

connection in terms of a reduced window size, at least one round-trip

time must elapse for that connection. There is probably not much point

in having the router respond to congestion on time scales much less

than the round-trip time of the connections passing through it. As noted

previously, 100 ms is not a bad estimate of average round-trip times in



PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 523 #46

6.4 Congestion-avoidance mechanisms 523

the Internet. Thus, Weight should be chosen such that changes in queue

length over time scales much less than 100 ms are filtered out.

Since RED works by sending signals to TCP flows to tell them to slow

down, you might wonder what would happen if those signals are ignored.

This is often called the unresponsive flow problem, and it has been a mat-

ter of some concern for several years. Unresponsive flows use more than

their fair share of network resources and could cause congestive collapse

if there were enough of them, just as in the days before TCP congestion

control. Some of the techniques described in Section 6.5 can help with

this problem by isolating certain classes of traffic from others. There is

also the possibility that a variant of RED could drop more heavily from

flows that are unresponsive to the initial hints that it sends; this continues

to be an area of active research.

6.4.3 Source-Based Congestion Avoidance

Unlike the two previous congestion-avoidance schemes, which depended

on new mechanisms in the routers, we now describe a strategy for detect-

ing the incipient stages of congestion—before losses occur—from the end

hosts. We first give a brief overview of a collection of related mechanisms

that use different information to detect the early stages of congestion, and

then we describe a specific mechanism in some detail.

The general idea of these techniques is to watch for some sign from the

network that some router’s queue is building up and that congestion will

happen soon if nothing is done about it. For example, the source might

notice that as packet queues build up in the network’s routers, there is a

measurable increase in the RTT for each successive packet it sends. One

particular algorithm exploits this observation as follows: The congestion

window normally increases as in TCP, but every two round-trip delays the

algorithm checks to see if the current RTT is greater than the average of

the minimum and maximum RTTs seen so far. If it is, then the algorithm

decreases the congestion window by one-eighth.

A second algorithm does something similar. The decision as to whether

or not to change the current window size is based on changes to both the

RTT and the window size. The window is adjusted once every two round-

trip delays based on the product

(CurrentWindow−OldWindow)× (CurrentRTT−OldRTT)



PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 524 #47

524 CHAPTER 6 Congestion control and resource allocation

Tahoe, Reno, and Vegas

The name “TCP Vegas” is a takeoff on earlier implementations of TCP that

were distributed in releases of 4.3 BSD Unix. These releases were known as

Tahoe and Reno (which, like Las Vegas, are places in Nevada), and the ver-

sions of TCP became known by the names of the BSD release. TCP Tahoe,

which is also known as BSD Network Release 1.0 (BNR1), corresponds to the

original implementation of Jacobson’s congestion-control mechanism and

includes all of the mechanisms described in Section 6.3 except fast recov-

ery. TCP Reno, which is also known as BSD Network Release 2.0 (BNR2), adds

the fast recovery mechanism, along with an optimization known as header

prediction—optimizing for the common case that segments arrive in order.

TCP Reno also supports delayed ACKs—acknowledging every other segment

rather than every segment—although this is a selectable option that is

sometimes turned off. A version of TCP distributed in 4.4 BSD Unix added

the “big windows” extensions described in Section 5.2.

With the rising popularity of the Linux operating system, and an increase

in the number of researchers looking at TCP congestion control, the situation

has grown considerablymore complex. Linux today offers a range of settings

for TCP congestion control, with Vegas being one option and a newer variant

called TCP CUBIC being the default. The whole idea of using place names to

refer to TCP variants has been taken up enthusiastically (see TCP-Illinois and

TCP-Westwood, for example).

One point you should take away from this discussion of TCP’s lineage

is that TCP has been a rather fluid protocol over the last several years,

especially in its congestion-control mechanism. In fact, you would not even

find universal agreement about which technique was introduced in which

release, due to the availability of intermediate versions and the fact that

patch has been layered on top of patch.

All that can be said with any certainty is that any two implementations of

TCP that follow the original specification, although they should interoperate,

will not necessarily perform well. Recognizing the performance implications

of interactions among TCP variants is a tricky business. In other words, you

could argue that TCP is no longer defined by a specification but rather by an

implementation. The only question is, which implementation?

If the result is positive, the source decreases the window size by one-

eighth; if the result is negative or 0, the source increases the window by

one maximum packet size. Note that the window changes during every

adjustment; that is, it oscillates around its optimal point.



PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 525 #48

6.4 Congestion-avoidance mechanisms 525

Another change seen as the network approaches congestion is the flat-

tening of the sending rate. A third scheme takes advantage of this fact.

Every RTT, it increases the window size by one packet and compares the

throughput achieved to the throughput when the window was one packet

smaller. If the difference is less than one-half the throughput achieved

when only one packet was in transit—as was the case at the beginning

of the connection—the algorithm decreases the window by one packet.

This scheme calculates the throughput by dividing the number of bytes

outstanding in the network by the RTT.

A fourth mechanism, the one we are going to describe in more detail,

is similar to this last algorithm in that it looks at changes in the through-

put rate or, more specifically, changes in the sending rate. However, it

differs from the third algorithm in the way it calculates throughput, and

instead of looking for a change in the slope of the throughput it com-

pares the measured throughput rate with an expected throughput rate.

The algorithm, TCP Vegas, is not widely deployed in the Internet, but the

strategy it takes continues to be studied. (See the Further Reading section

for additional information.)

The intuition behind the Vegas algorithm can be seen in the trace of

standard TCP given in Figure 6.18. (See the preceding sidebar for an expla-

nation of the name TCP Vegas.) The top graph shown in Figure 6.18 traces

the connection’s congestion window; it shows the same information as the

traces given earlier in this section. The middle and bottom graphs depict

new information: The middle graph shows the average sending rate as

measured at the source, and the bottom graph shows the average queue

length as measured at the bottleneck router. All three graphs are synchro-

nized in time. In the period between 4.5 and 6.0 seconds (shaded region),

the congestion window increases (top graph). We expect the observed

throughput to also increase, but instead it stays flat (middle graph). This

is because the throughput cannot increase beyond the available band-

width. Beyond this point, any increase in the window size only results in

packets taking up buffer space at the bottleneck router (bottom graph).

A useful metaphor that describes the phenomenon illustrated in

Figure 6.18 is driving on ice. The speedometer (congestion window) may

say that you are going 30 miles an hour, but by looking out the car window

and seeing people pass you on foot (measured sending rate) you know

that you are going no more than 5 miles an hour. The extra energy is being

absorbed by the car’s tires (router buffers).



PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 526 #49

526 CHAPTER 6 Congestion control and resource allocation

K
B

Time (seconds)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Time (seconds)

60

20

70

30
40
50

10

S
e
n
d
in

g
 K

B
p
s

900

300

100

1100

500

700

Time (seconds)

Q
u
e
u
e
 s

iz
e
 i
n
 r

o
u
te

r

5

10

n FIGURE 6.18 Congestion window versus observed throughput rate (the three graphs are synchronized). Top,

congestion window; middle, observed throughput; bottom, buffer space taken up at the router. Colored line =

CongestionWindow; solid bullet = timeout; hash marks = time when each packet is transmitted; vertical bars =

time when a packet that was eventually retransmitted was first transmitted.

TCP Vegas uses this idea to measure and control the amount of extra

data this connection has in transit, where by “extra data” we mean data

that the source would not have transmitted had it been trying to match

exactly the available bandwidth of the network. The goal of TCP Vegas is

to maintain the “right” amount of extra data in the network. Obviously,

if a source is sending too much extra data, it will cause long delays and

possibly lead to congestion. Less obviously, if a connection is sending too

little extra data, it cannot respond rapidly enough to transient increases

in the available network bandwidth. TCP Vegas’s congestion-avoidance

actions are based on changes in the estimated amount of extra data in the



PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 527 #50

6.4 Congestion-avoidance mechanisms 527

network, not only on dropped packets. We now describe the algorithm in

detail.

First, define a given flow’s BaseRTT to be the RTT of a packet when the

flow is not congested. In practice, TCP Vegas sets BaseRTT to the mini-

mum of all measured round-trip times; it is commonly the RTT of the first

packet sent by the connection, before the router queues increase due to

traffic generated by this flow. If we assume that we are not overflowing the

connection, then the expected throughput is given by

ExpectedRate = CongestionWindow/BaseRTT

where CongestionWindow is the TCP congestion window, which we

assume (for the purpose of this discussion) to be equal to the number of

bytes in transit.

Second, TCP Vegas calculates the current sending rate, ActualRate. This

is done by recording the sending time for a distinguished packet, record-

ing how many bytes are transmitted between the time that packet is sent

and when its acknowledgment is received, computing the sample RTT for

the distinguished packet when its acknowledgment arrives, and dividing

the number of bytes transmitted by the sample RTT. This calculation is

done once per round-trip time.

Third, TCP Vegas compares ActualRate to ExpectedRate and adjusts

the window accordingly. We let Diff = ExpectedRate−ActualRate. Note

that Diff is positive or 0 by definition, since ActualRate > ExpectedRate

implies that we need to change BaseRTT to the latest sampled RTT. We

also define two thresholds, α < β, roughly corresponding to having too

little and too much extra data in the network, respectively. When Diff < α,

TCP Vegas increases the congestion window linearly during the next RTT,

and when Diff > β, TCP Vegas decreases the congestion window linearly

during the next RTT. TCP Vegas leaves the congestion window unchanged

when α < Diff < β.

Intuitively, we can see that the farther away the actual throughput

gets from the expected throughput, the more congestion there is in the

network, which implies that the sending rate should be reduced. The

β threshold triggers this decrease. On the other hand, when the actual

throughput rate gets too close to the expected throughput, the connec-

tion is in danger of not utilizing the available bandwidth. The α threshold

triggers this increase. The overall goal is to keep between α and β extra

bytes in the network.



PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 528 #51

528 CHAPTER 6 Congestion control and resource allocation

Figure 6.19 traces the TCP Vegas congestion-avoidance algorithm. The

top graph traces the congestion window, showing the same information

as the other traces given throughout this chapter. The bottom graph traces

the expected and actual throughput rates that govern how the conges-

tion window is set. It is this bottom graph that best illustrates how the

algorithm works. The colored line tracks the ExpectedRate, while the

black line tracks the ActualRate. The wide shaded strip gives the region

between the α and β thresholds; the top of the shaded strip is α KBps

away from ExpectedRate, and the bottom of the shaded strip is β KBps

away from ExpectedRate. The goal is to keep the ActualRate between

these two thresholds, within the shaded region. Whenever ActualRate

falls below the shaded region (i.e., gets too far from ExpectedRate), TCP

Vegas decreases the congestion window because it fears that too many

packets are being buffered in the network. Likewise, whenever ActualRate

goes above the shaded region (i.e., gets too close to the ExpectedRate),

TCP Vegas increases the congestion window because it fears that it is

underutilizing the network.

Because the algorithm, as just presented, compares the difference

between the actual and expected throughput rates to the α and β thresh-

olds, these two thresholds are defined in terms of KBps. However, it is

70
60
50
40
30
20
10

K
B

Time (seconds)

240

200

160

120

80

40

K
B

p
s

0.5 1.51.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Time (seconds)

0.5 1.51.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

n FIGURE 6.19 Trace of TCP Vegas congestion-avoidance mechanism. Top, congestion window; bottom, expected

(colored line) and actual (black line) throughput. The shaded area is the region between theα andβ thresholds.



PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 529 #52

6.4 Congestion-avoidance mechanisms 529

perhaps more accurate to think in terms of how many extra buffers the

connection is occupying in the network. For example, on a connection

with a BaseRTT of 100 ms and a packet size of 1 KB, if α = 30 KBps and

β = 60 KBps, then we can think of α as specifying that the connection

needs to be occupying at least 3 extra buffers in the network and β as spec-

ifying that the connection should occupy no more than 6 extra buffers

in the network. In practice, a setting of α to 1 buffer and β to 3 buffers

works well.

Finally, you will notice that TCP Vegas decreases the congestion

window linearly, seemingly in conflict with the rule that multiplicative

Evaluating a New Congestion-Control Mechanism

Suppose you develop a new congestion-control mechanism and want to

evaluate its performance. For example, you might want to compare it to the

current mechanism running on the Internet. How do you go about measur-

ing and evaluating your mechanism? Although at one time the Internet’s

primary purpose in lifewas to support networking research, today it is a large

production network and therefore completely inappropriate for running a

controlled experiment.

If your approach is purely end to end—that is, if it assumes only FIFO

routers within the Internet—then it is possible to run your congestion-

control mechanism on a small set of hosts and to measure the throughput

your connections are able to achieve. We need to add a word of caution

here, however. It is surprisingly easy to invent a congestion-control mecha-

nism that achieves five times the throughput of TCP across the Internet. You

simply blast packets into the Internet at a high rate, thereby causing con-

gestion. All the other hosts running TCP detect this congestion and reduce

the rate at which they are sending packets. Your mechanism then happily

consumes all the bandwidth. This strategy is fast but hardly fair.

Experimenting directly on the Internet, even when done carefully, will

not work when your congestion-control mechanism involves changes to

the routers. It is simply not practical to change the software running on

thousands of routers for the sake of evaluating a new congestion-control

algorithm. In this case, network designers are forced to test their systems on

simulated networks or private testbed networks. For example, the TCP traces

presented in this chapter were generated by an implementation of TCP that

was running on a network simulator. The challenge in either a simulation

or a testbed is coming up with a topology and a traffic workload that are

representative of the real Internet.



PETERSON-AND-DAVIE 12-ch06-478-577-9780123850591 2011/11/1 21:50 Page 530 #53

530 CHAPTER 6 Congestion control and resource allocation

decrease is needed to ensure stability. The explanation is that TCP

Vegas does use multiplicative decrease when a timeout occurs; the lin-

ear decrease just described is an early decrease in the congestion window

that should happen before congestion occurs and packets start being

dropped.

6.5 QUALITY OF SERVICE

For many years, packet-switched networks have offered the promise of

supporting multimedia applications that combine audio, video, and data.

After all, once digitized, audio and video information becomes like any

other form of data—a stream of bits to be transmitted. One obstacle to the

fulfillment of this promise has been the need for higher-bandwidth links.

Recently, however, improvements in coding have reduced the bandwidth

needs of audio and video applications, while at the same time link speeds

have increased.

There is more to transmitting audio and video over a network than just

providing sufficient bandwidth, however. Participants in a telephone con-

versation, for example, expect to be able to converse in such a way that

one person can respond to something said by the other and be heard

almost immediately. Thus, the timeliness of delivery can be very impor-

tant. We refer to applications that are sensitive to the timeliness of data as

real-time applications. Voice and video applications tend to be the canon-

ical examples, but there are others such as industrial control—you would

like a command sent to a robot arm to reach it before the arm crashes

into something. Even file transfer applications can have timeliness con-

straints, such as a requirement that a database update complete overnight

before the business that needs the data resumes on the next day.

The distinguishing characteristic of real-time applications is that they

need some sort of assurance from the network that data is likely to

arrive on time (for some definition of “on time”). Whereas a non-real-

time application can use an end-to-end retransmission strategy to make

sure that data arrives correctly, such a strategy cannot provide timeli-

ness: Retransmission only adds to total latency if data arrives late. Timely

arrival must be provided by the network itself (the routers), not just at

the network edges (the hosts). We therefore conclude that the best-effort

model, in which the network tries to deliver your data but makes no

promises and leaves the cleanup operation to the edges, is not sufficient


