6.3 TCP congestion control

queue each time around. This results in each flow getting 1/nth of the
bandwidth when there are »n flows. With WFQ, however, one queue might
have a weight of 2, a second queue might have a weight of 1, and a third
queue might have a weight of 3. Assuming that each queue always con-
tains a packet waiting to be transmitted, the first flow will get one-third
of the available bandwidth, the second will get one-sixth of the available
bandwidth, and the third will get one-half of the available bandwidth.

While we have described WFQ in terms of flows, note that it could
be implemented on classes of traffic, where classes are defined in some
other way than the simple flows introduced at the start of this chapter.
For example, we could use some bits in the IP header to identify classes
and allocate a queue and a weight to each class. This is exactly what is
proposed as part of the Differentiated Services architecture described in
Section 6.5.3.

Note that a router performing WFQ must learn what weights to assign
to each queue from somewhere, either by manual configuration or by
some sort of signalling from the sources. In the latter case, we are mov-
ing toward a reservation-based model. Just assigning a weight to a queue
provides a rather weak form of reservation because these weights are only
indirectly related to the bandwidth the flow receives. (The bandwidth
available to a flow also depends, for example, on how many other flows
are sharing the link.) We will see in Section 6.5.2 how WFQ can be used as
a component of a reservation-based resource allocation mechanism.

Finally, we observe that this whole discussion of queue management illustrates
an important system design principle known as separating policy and mechanism.
The idea is to view each mechanism as a black box that provides a multifaceted
service that can be controlled by a set of knobs. A policy specifies a particular
setting of those knobs but does not know (or care) about how the black box
is implemented. In this case, the mechanism in question is the queuing disci-
pline, and the policy is a particular setting of which flow gets what level of service
(e.g., priority or weight). We discuss some policies that can be used with the WFQ
mechanism in Section 6.5.

6.3 TCP CONGESTION CONTROL

This section describes the predominant example of end-to-end conges-
tion control in use today, that implemented by TCP. The essential strategy
of TCP is to send packets into the network without a reservation and then

499



500

T

et
i

CHAPTER 6 Congestion control and resource allocation

to react to observable events that occur. TCP assumes only FIFO queuing
in the network’s routers, but also works with fair queuing.

TCP congestion control was introduced into the Internet in the late
1980s by Van Jacobson, roughly eight years after the TCP/IP protocol stack
had become operational. Immediately preceding this time, the Internet
was suffering from congestion collapse—hosts would send their packets
into the Internet as fast as the advertised window would allow, conges-
tion would occur at some router (causing packets to be dropped), and the
hosts would time out and retransmit their packets, resulting in even more
congestion.

Broadly speaking, the idea of TCP congestion control is for each source
to determine how much capacity is available in the network, so that it
knows how many packets it can safely have in transit. Once a given source
has this many packets in transit, it uses the arrival of an ACK as a signal
that one of its packets has left the network and that it is therefore safe to
insert a new packet into the network without adding to the level of con-
gestion. By using ACKs to pace the transmission of packets, TCP is said
to be self-clocking. Of course, determining the available capacity in the
first place is no easy task. To make matters worse, because other connec-
tions come and go, the available bandwidth changes over time, meaning
that any given source must be able to adjust the number of packets it has
in transit. This section describes the algorithms used by TCP to address
these and other problems.

Note that, although we describe the TCP congestion-control mecha-
nisms one at a time, thereby giving the impression that we are talking
about three independent mechanisms, it is only when they are taken as
a whole that we have TCP congestion control. Also, while we are going to
begin here with the variant of TCP congestion control most often referred
to as standard TCP, we will see that there are actually quite a few vari-
ants of TCP congestion control in use today, and researchers continue to
explore new approaches to addressing this problem. Some of these new
approaches are discussed below.

6.3.1 Additive Increase/Multiplicative Decrease

TCP maintains a new state variable for each connection, called Con-
gestionWindow, which is used by the source to limit how much data it
is allowed to have in transit at a given time. The congestion window
is congestion control’s counterpart to flow control’s advertised window.




6.3 TCP congestion control

TCP is modified such that the maximum number of bytes of unacknow-
ledged data allowed is now the minimum of the congestion window and
the advertised window. Thus, using the variables defined in Section 5.2.4,
TCP’s effective window is revised as follows:

MaxWindow = MIN(CongestionWindow, AdvertisedWindow)
EffectiveWindow = MaxWindow — (LastByteSent — LastByteAcked).

That is, MaxWindow replaces AdvertisedWindow in the calculation of
EffectiveWindow. Thus, a TCP source is allowed to send no faster than
the slowest component—the network or the destination host—can
accommodate.

The problem, of course, is how TCP comes to learn an appropriate
value for CongestionWindow. Unlike the AdvertisedWindow, which is sent
by the receiving side of the connection, there is no one to send a suit-
able CongestionWindow to the sending side of TCP. The answer is that the
TCP source sets the CongestionWindow based on the level of congestion it
perceives to exist in the network. This involves decreasing the congestion
window when the level of congestion goes up and increasing the conges-
tion window when the level of congestion goes down. Taken together, the
mechanism is commonly called additive increase/multiplicative decrease
(AIMD); the reason for this mouthful of a name will become apparent
below.

The key question, then, is how does the source determine that the net-
work is congested and that it should decrease the congestion window?
The answer is based on the observation that the main reason packets
are not delivered, and a timeout results, is that a packet was dropped
due to congestion. It is rare that a packet is dropped because of an error
during transmission. Therefore, TCP interprets timeouts as a sign of con-
gestion and reduces the rate at which it is transmitting. Specifically, each
time a timeout occurs, the source sets CongestionWindow to half of its
previous value. This halving of the CongestionWindow for each timeout
corresponds to the “multiplicative decrease” part of AIMD.

Although CongestionWindow is defined in terms of bytes, it is easi-
est to understand multiplicative decrease if we think in terms of whole
packets. For example, suppose the CongestionWindow is currently set to
16 packets. If a loss is detected, CongestionWindow is set to 8. (Normally,
a loss is detected when a timeout occurs, but as we see below, TCP has
another mechanism to detect dropped packets.) Additional losses cause

501



502 CHAPTER 6 Congestion control and resource allocation

CongestionWindow to be reduced to 4, then 2, and finally to 1 packet. Con-
gestionWindow is not allowed to fall below the size of a single packet, or in
TCP terminology, the maximum segment size (MSS).

A congestion-control strategy that only decreases the window size is
obviously too conservative. We also need to be able to increase the con-
gestion window to take advantage of newly available capacity in the
network. This is the “additive increase” part of AIMD, and it works as
follows. Every time the source successfully sends a CongestionWindow’s
worth of packets—that is, each packet sent out during the last round-trip
time (RTT) has been ACKed—it adds the equivalent of 1 packet to Con-
gestionWindow. This linear increase is illustrated in Figure 6.8. Note that,
in practice, TCP does not wait for an entire window’s worth of ACKs to
add 1 packet’s worth to the congestion window, but instead increments
CongestionWindow by a little for each ACK that arrives. Specifically, the

Source Destination

M FIGURE 6.8 Packets in transit during additive increase, with one packet being added each RTT.



6.3 TCP congestion control

congestion window is incremented as follows each time an ACK arrives:

Increment = MSS x (MSS/CongestionWindow)

CongestionWindow+ = Increment

That is, rather than incrementing CongestionWindow by an entire MSS
bytes each RTT, we increment it by a fraction of MSS every time an ACK is
received. Assuming that each ACK acknowledges the receipt of MSS bytes,
then that fraction is MSS/CongestionWindow.

This pattern of continually increasing and decreasing the congestion
window continues throughout the lifetime of the connection. In fact, if
you plot the current value of CongestionWindow as a function of time, you
get a sawtooth pattern, as illustrated in Figure 6.9. The important con-
cept to understand about AIMD is that the source is willing to reduce its
congestion window at a much faster rate than it is willing to increase its
congestion window. This is in contrast to an additive increase/additive
decrease strategy in which the window would be increased by 1 packet
when an ACK arrives and decreased by 1 when a timeout occurs. It has
been shown that AIMD is a necessary condition for a congestion-control
mechanism to be stable (see the Further Reading section). One intuitive
reason to decrease the window aggressively and increase it conservatively
is that the consequences of having too large a window are much worse
than those of it being too small. For example, when the window is too
large, packets that are dropped will be retransmitted, making congestion
even worse; thus, it is important to get out of this state quickly.

Finally, since a timeout is an indication of congestion that triggers mul-
tiplicative decrease, TCP needs the most accurate timeout mechanism it

70
60
50

10

v 40
30
20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Time (seconds)

9.0

10.0

M FIGURE 6.9 Typical TCP sawtooth pattern.

503



504

T

et
i
i

CHAPTER 6 Congestion control and resource allocation

estiori: T

=

There is one situation in which TCP congestion control has a tendency to fail
spectacularly. When a link drops packets at a relatively high rate due to bit
errors—something that is fairly common on wireless links—TCP misinter-
prets this as a signal of congestion. Consequently, the TCP sender reduces
its rate, which typically has no effect on the rate of bit errors, so the situation
can continue until the send window drops to a single packet. At this point,
the throughput achieved by TCP will deteriorate to one packet per round-
trip time, which may be much less than the appropriate rate for a network
that is not actually experiencing congestion.

Given this situation, you may wonder how it is that TCP works at all over
wireless networks. Fortunately, there are a number of ways to address the
problem. Most commonly, some steps are taken at the link layer to reduce
or hide packet losses due to bit errors. For example, 802.11 networks apply
forward error correction (FEC) to the transmitted packets so that some num-
ber of errors can be corrected by the receiver. Another approach is to do
link-layer retransmission, so that even if a packet is corrupted and dropped
it eventually gets sent successfully, and the initial loss never becomes appar-
ent to TCP. Each of these approaches has its problems: FEC wastes some
bandwidth and will sometimes still fail to correct errors, while retransmis-
sion increases both the RTT of the connection and its variance, leading to
worse performance.

Another approach used in some situations is to split the TCP connection
into wireless and wired segments. There are many variations on this idea,
but the basic approach is to treat losses on the wired segment as congestion
signals but treat losses on the wireless segment as being caused by bit errors.
This sort of technique has been used in satellite networks, where the RTT
is so long already that you really don’t want to make it any longer. Unlike
the link-layer approaches, however, this one is a fundamental change to the
end-to-end operation of the protocol; it also means that the forward and
reverse paths of the connection have to pass through the same “middlebox”
that is doing the splitting of the connection.

Another set of approaches tries to distinguish intelligently between the
two difference classes of loss: congestion and bit errors. There are clues
that losses are due to congestion, such as increasing RTT and correlation
among successive losses. Explicit Congestion Notification (ECN) marking
(see Section 6.4.2) can also provide an indication that congestion is immi-
nent, so a subsequent loss is more likely to be congestion related. Clearly,
if you can detect the difference between the two types of loss, then TCP
doesn’t need to reduce its window for bit-error-related losses. Unfortunately,
it is hard to make this determination with 100% accuracy, and this issue
continues to be an area of active research.




ﬂ:

I

"
o
| 1

6.3 TCP congestion control 505

can afford. We already covered TCP’s timeout mechanism in Section 5.2.6,
so we do not repeat it here. The two main things to remember about that
mechanism are that (1) timeouts are set as a function of both the average
RTT and the standard deviation in that average, and (2) due to the cost of
measuring each transmission with an accurate clock, TCP only samples
the round-trip time once per RTT (rather than once per packet) using a
coarse-grained (500-ms) clock.

6.3.2 Slow Start

The additive increase mechanism just described is the right approach
to use when the source is operating close to the available capacity of
the network, but it takes too long to ramp up a connection when it is
starting from scratch. TCP therefore provides a second mechanism, iron-
ically called slow start,® which is used to increase the congestion window
rapidly from a cold start. Slow start effectively increases the congestion
window exponentially, rather than linearly.

Specifically, the source starts out by setting CongestionWindow to
one packet. When the ACK for this packet arrives, TCP adds 1 to Conges-
tionWindow and then sends two packets. Upon receiving the correspond-
ing two ACKs, TCP increments CongestionWindow by 2—one for each
ACK—and next sends four packets. The end result is that TCP effectively
doubles the number of packets it has in transit every RTT. Figure 6.10
shows the growth in the number of packets in transit during slow start.
Compare this to the linear growth of additive increase illustrated in
Figure 6.8.

Why any exponential mechanism would be called “slow” is puzzling
at first, but it can be explained if put in the proper historical context. We
need to compare slow start not against the linear mechanism of the pre-
vious subsection, but against the original behavior of TCP. Consider what
happens when a connection is established and the source first starts to
send packets—that is, when it currently has no packets in transit. If the
source sends as many packets as the advertised window allows—which
is exactly what TCP did before slow start was developed—then even if
there is a fairly large amount of bandwidth available in the network, the

SEven though the original paper describing slow start called it “slow-start,” the unhy-
phenated term is more commonly used today, so we omit the hyphen here.



506

CHAPTER 6 Congestion control and resource allocation

Source Destination

O\

M FIGURE 6.10 Packets in transit during slow start.

routers may not be able to consume this burst of packets. It all depends on
how much buffer space is available at the routers. Slow start was therefore
designed to space packets out so that this burst does not occur. In other
words, even though its exponential growth is faster than linear growth,
slow start is much “slower” than sending an entire advertised window’s
worth of data all at once.

There are actually two different situations in which slow start runs. The
first is at the very beginning of a connection, at which time the source
has no idea how many packets it is going to be able to have in transit at
a given time. (Keep in mind that TCP runs over everything from 9600-
bps links to 2.4-Gbps links, so there is no way for the source to know
the network’s capacity.) In this situation, slow start continues to double
CongestionWindow each RTT until there is a loss, at which time a timeout
causes multiplicative decrease to divide CongestionWindow by 2.



ﬂ:

I

"
o
| 1

6.3 TCP congestion control 507

The second situation in which slow start is used is a bit more subtle;
it occurs when the connection goes dead while waiting for a timeout to
occur. Recall how TCP’s sliding window algorithm works—when a packet
is lost, the source eventually reaches a point where it has sent as much
data as the advertised window allows, and so it blocks while waiting for an
ACK that will not arrive. Eventually, a timeout happens, but by this time
there are no packets in transit, meaning that the source will receive no
ACKs to “clock” the transmission of new packets. The source will instead
receive a single cumulative ACK that reopens the entire advertised win-
dow, but, as explained above, the source then uses slow start to restart the
flow of data rather than dumping a whole window’s worth of data on the
network all at once.

Although the source is using slow start again, it now knows more
information than it did at the beginning of a connection. Specifically,
the source has a current (and useful) value of CongestionWindow; this is
the value of CongestionWindow that existed prior to the last packet loss,
divided by 2 as a result of the loss. We can think of this as the target con-
gestion window. Slow start is used to rapidly increase the sending rate
up to this value, and then additive increase is used beyond this point.
Notice that we have a small bookkeeping problem to take care of, in that
we want to remember the target congestion window resulting from mul-
tiplicative decrease as well as the actual congestion window being used
by slow start. To address this problem, TCP introduces a temporary vari-
able to store the target window, typically called CongestionThreshold, that
is set equal to the CongestionWindow value that results from multiplica-
tive decrease. The variable CongestionWindow is then reset to one packet,
and it is incremented by one packet for every ACK that is received until
it reaches CongestionThreshold, at which point it is incremented by one
packet per RTT.

In other words, TCP increases the congestion window as defined by the
following code fragment:

{
u_int cw = state->CongestionWindow;
u_int incr = state->maxseg;

if (cw > state->CongestionThreshold)
incr = incr % incr / cw;



508

CHAPTER 6 Congestion control and resource allocation

70 =
60
50
m 40
X 30
20
10

state->CongestionWindow = MIN(cw + incr, TCP_MAXWIN);
}

where state represents the state of a particular TCP connection and
TCP_MAXWIN defines an upper bound on how large the congestion
window is allowed to grow.

Figure 6.11 traces how TCP’s CongestionWindow increases and decr-
eases over time and serves to illustrate the interplay of slow start
and additive increase/multiplicative decrease. This trace was taken
from an actual TCP connection and shows the current value of
CongestionWindow—the colored line—over time.

There are several things to notice about this trace. The first is the rapid
increase in the congestion window at the beginning of the connection.
This corresponds to the initial slow start phase. The slow start phase
continues until several packets are lost at about 0.4 seconds into the con-
nection, at which time CongestionWindow flattens out at about 34 KB.
(Why so many packets are lost during slow start is discussed below.) The
reason why the congestion window flattens is that there are no ACKs arriv-
ing, due to the fact that several packets were lost. In fact, no new packets
are sent during this time, as denoted by the lack of hash marks at the top
of the graph. A timeout eventually happens at approximately 2 seconds, at
which time the congestion window is divided by 2 (i.e., cut from approx-
imately 34 KB to around 17 KB) and CongestionThreshold is set to this
value. Slow start then causes CongestionWindow to be reset to one packet
and to start ramping up from there.

—

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Time (seconds)

M FIGURE 6.11 Behavior of TCP congestion control. Colored line = value of CongestionWindow over time; solid
bullets at top of graph = timeouts; hash marks at top of graph = time when each packet is transmitted; vertical bars =
time when a packet that was eventually retransmitted was first transmitted.



ﬂ:

I

"
o
| 1

6.3 TCP congestion control 509

There is not enough detail in the trace to see exactly what happens
when a couple of packets are lost just after 2 seconds, so we jump ahead
to the linear increase in the congestion window that occurs between 2
and 4 seconds. This corresponds to additive increase. At about 4 seconds,
CongestionWindow flattens out, again due to a lost packet. Now, at about
5.5 seconds:

1. Atimeout happens, causing the congestion window to be divided
by 2, dropping it from approximately 22 KB to 11 KB, and
CongestionThreshold is set to this amount.

2. CongestionWindow is reset to one packet, as the sender enters slow
start.

3. Slow start causes CongestionWindow to grow exponentially until it
reaches CongestionThreshold.

4. CongestionWindow then grows linearly.

The same pattern is repeated at around 8 seconds when another timeout
occurs.

We now return to the question of why so many packets are lost during
the initial slow start period. At this point, TCP is attempting to learn how
much bandwidth is available on the network. This is a very difficult task. If
the source is not aggressive at this stage—for example, if it only increases
the congestion window linearly—then it takes a long time for it to discover
how much bandwidth is available. This can have a dramatic impact on the
throughput achieved for this connection. On the other hand, if the source
is aggressive at this stage, as TCP is during exponential growth, then the
source runs the risk of having half a window’s worth of packets dropped
by the network.

To see what can happen during exponential growth, consider the sit-
uation in which the source was just able to successfully send 16 packets
through the network, causing it to double its congestion window to 32.
Suppose, however, that the network happens to have just enough capac-
ity to support 16 packets from this source. The likely result is that 16 of the
32 packets sent under the new congestion window will be dropped by the
network; actually, this is the worst-case outcome, since some of the pack-
ets will be buffered in some router. This problem will become increasingly
severe as the delay x bandwidth product of networks increases. For exam-
ple, a delay x bandwidth product of 500 KB means that each connection



T

et
i

510 CHAPTER 6 Congestion control and resource allocation

has the potential to lose up to 500 KB of data at the beginning of each
connection. Of course, this assumes that both the source and the destina-
tion implement the “big windows” extension.

Some protocol designers have proposed alternatives to slow start,
whereby the source tries to estimate the available bandwidth by more
sophisticated means. A recent example is the quick-start mechanism
undergoing standardization at the IETE The basic idea is that a TCP
sender can ask for an initial sending rate greater than slow start would
allow by putting a requested rate in its SYN packet as an IP option. Routers
along the path can examine the option, evaluate the current level of
congestion on the outgoing link for this flow, and decide if that rate is
acceptable, if a lower rate would be acceptable, or if standard slow start
should be used. By the time the SYN reaches the receiver, it will contain
either arate that was acceptable to all routers on the path or an indication
that one or more routers on the path could not support the quick-start
request. In the former case, the TCP sender uses that rate to begin trans-
mission; in the latter case, it falls back to standard slow start. If TCP is
allowed to start off sending at a higher rate, a session could more quickly
reach the point of filling the pipe, rather than taking many round-trip
times to do so.

Clearly one of the challenges to this sort of enhancement to TCP is that
it requires substantially more cooperation from the routers than standard
TCP does. If a single router in the path does not support quick-start, then
the system reverts to standard slow start. Thus, it could be a long time
before these types of enhancements could make it into the Internet; for
now, they are more likely to be used in controlled network environments
(e.g., research networks).

6.3.3 Fast Retransmit and Fast Recovery

The mechanisms described so far were part of the original proposal to
add congestion control to TCP. It was soon discovered, however, that the
coarse-grained implementation of TCP timeouts led to long periods of
time during which the connection went dead while waiting for a timer to
expire. Because of this, a new mechanism called fast retransmit was added
to TCP. Fast retransmit is a heuristic that sometimes triggers the retrans-
mission of a dropped packet sooner than the regular timeout mechanism.
The fast retransmit mechanism does not replace regular timeouts; it just
enhances that facility.



6.3 TCP congestion control

The idea of fast retransmit is straightforward. Every time a data packet
arrives at the receiving side, the receiver responds with an acknowledg-
ment, even if this sequence number has already been acknowledged.
Thus, when a packet arrives out of order—when TCP cannot yet acknowl-
edge the data the packet contains because earlier data has not yet
arrived—TCP resends the same acknowledgment it sent the last time. This
second transmission of the same acknowledgment is called a duplicate
ACK. When the sending side sees a duplicate ACK, it knows that the other
side must have received a packet out of order, which suggests that an ear-
lier packet might have been lost. Since it is also possible that the earlier
packet has only been delayed rather than lost, the sender waits until it
sees some number of duplicate ACKs and then retransmits the missing
packet. In practice, TCP waits until it has seen three duplicate ACKs before
retransmitting the packet.

Figure 6.12 illustrates how duplicate ACKs lead to a fast retransmit. In
this example, the destination receives packets 1 and 2, but packet 3 is lost
in the network. Thus, the destination will send a duplicate ACK for packet
2 when packet 4 arrives, again when packet 5 arrives, and so on. (To sim-
plify this example, we think in terms of packets 1, 2, 3, and so on, rather

Sender Receiver
Packet 1
Packet 2
Packet 3 \( ACK 1
Packet 4 ACK 2
Packet 5 ACK 2
Packet 6
ACK 2
ACK 2
Retransmit
packet 3

M FIGURE 6.12 Fast retransmit based on duplicate ACKs.

511



512

CHAPTER 6 Congestion control and resource allocation

KB

70

50
40
30
20
10

than worrying about the sequence numbers for each byte.) When the
sender sees the third duplicate ACK for packet 2—the one sent because
the receiver had gotten packet 6—it retransmits packet 3. Note that when
the retransmitted copy of packet 3 arrives at the destination, the receiver
then sends a cumulative ACK for everything up to and including packet 6
back to the source.

Figure 6.13 illustrates the behavior of a version of TCP with the fast
retransmit mechanism. It is interesting to compare this trace with that
given in Figure 6.11, where fast retransmit was not implemented—the
long periods during which the congestion window stays flat and no pack-
ets are sent has been eliminated. In general, this technique is able to
eliminate about half of the coarse-grained timeouts on a typical TCP con-
nection, resulting in roughly a 20% improvement in the throughput over
what could otherwise have been achieved. Notice, however, that the fast
retransmit strategy does not eliminate all coarse-grained timeouts. This is
because for a small window size there will not be enough packets in tran-
sit to cause enough duplicate ACKs to be delivered. Given enough lost
packets—for example, as happens during the initial slow start phase—
the sliding window algorithm eventually blocks the sender until a timeout
occurs. Given the current 64-KB maximum advertised window size, TCP’s
fast retransmit mechanism is able to detect up to three dropped packets
per window in practice.

Finally, there is one last improvement we can make. When the fast
retransmit mechanism signals congestion, rather than drop the conges-
tion window all the way back to one packet and run slow start, it is

6.0 7.0

T T T
1.0 2.0 3.0 4.0 5.0
Time (seconds)

M FIGURE 6.13 Trace of TCP with fast retransmit. Colored line = CongestionWindow; solid bullet = timeout;
hash marks = time when each packet is transmitted; vertical bars = time when a packet that was eventually retransmitted
was first transmitted.




6.3 TCP congestion control

possible to use the ACKs that are still in the pipe to clock the send-
ing of packets. This mechanism, which is called fast recovery, effectively
removes the slow start phase that happens between when fast retransmit
detects alost packet and additive increase begins. For example, fast recov-
ery avoids the slow start period between 3.8 and 4 seconds in Figure 6.13
and instead simply cuts the congestion window in half (from 22 KB to
11 KB) and resumes additive increase. In other words, slow start is only
used at the beginning of a connection and whenever a coarse-grained
timeout occurs. At all other times, the congestion window is following a
pure additive increase/multiplicative decrease pattern.

Many times in the last two decades the argument over how fast TCP can
be made to run has reared its head. First there was the claim that TCP was
too complex to run fast in host software as networks headed toward the
gigabit range. This claim was repeatedly disproved. More recently however,
an important theoretical result has shown that there are limits to how well
standard TCP can perform in very high bandwidth-delay environments. An
analysis of the congestion-control behavior of TCP has shown that, in the
steady state, TCP’s throughput is approximately

Rate — 1.2x MSS
“T\RIT x/p

In a network with an RTT of 100 ms and 10-Gbps links, it follows that a single
TCP connection will only be able to achieve a throughput close to link speed
if the loss rate is below one per 5 billion packets—equivalent to one conges-
tion event every 100 minutes. Even very rare packet losses due to bit errors
on the fiber will typically produce a considerably higher loss rate than this, |
making it impossible to fill the pipe with a single TCP connection.

A number of proposals to improve on TCP’s behavior in networks with
very high bandwidth delay products have been put forward, and they range
from the incremental to the dramatic. Observing the dependency on MSS,
one simple change that has been proposed is to increase the packet size.
Unfortunately, increasing packet sizes also increases the chance that a given
packet will suffer from a bit error, so at some point increasing the MSS
alone may not be sufficient. Other proposals that have been advanced at
the IETF and elsewhere make changes to the way TCP avoids congestion, in
an attempt to make TCP better able to use bandwidth that is available. The
challenges here are to be fair to standard TCP implementations and also to
avoid the congestion collapse issues that led to the current behavior of TCP.

513



514

CHAPTER 6 Congestion control and resource allocation

The HighSpeed TCP proposal, now an experimental RFC, makes TCP
more aggressive only when it is clearly operating in a very high bandwidth- ||
delay product environment and not competing with a lot of other traffic.
In essence, when the congestion window gets very large, HighSpeed TCP
starts to increase CongestionWindow by a larger amount that standard TCP.
In the normal environment where CongestionWindow is relatively small
(about 40 x MSS), HighSpeed TCP is indistinguishable from standard TCP.
Many other proposals have been made in this vein, some of which are listed
in the Further Reading section. Notably, the default TCP behavior in the
Linux operating system is now based on a TCP variant called CUBIC, which
also expands the congestion window aggressively in high bandwidth-delay
product regimes, while maintaining compatibility with older TCP variants in
more bandwidth-constrained environments.

The Quick-Start proposal, which changes the start-up behavior of TCP,
was mentioned above. Since it can enable a TCP connection to ramp up
its sending rate more quickly, its effect on TCP performance is most notice-
able when connections are short, or when an application periodically stops
sending data and TCP would otherwise return to slow start.

Yet another proposal, FAST TCP, takes an approach similar to TCP Vegas
described in the next section. The basic idea is to anticipate the onset of
congestion and avoid it, thereby not taking the performance hit associated
with decreasing the congestion window.

Several proposals that involve more dramatic changes to TCP or even
replace it with a new protocol have been developed. These have consid-
erable potential to fill the pipe quickly and fairly in high bandwidth-delay
environments, but they also face higher deployment challenges. We refer
the reader to the end of this chapter for references to ongoing work in

this area.
| 4 a

6.4 CONGESTION-AVOIDANCE MECHANISMS

It is important to understand that TCP’s strategy is to control conges-
tion once it happens, as opposed to trying to avoid congestion in the first
place. In fact, TCP repeatedly increases the load it imposes on the network
in an effort to find the point at which congestion occurs, and then it backs
off from this point. Said another way, TCP needs to create losses to find the
available bandwidth of the connection. An appealing alternative, but one
that has not yet been widely adopted, is to predict when congestion is
about to happen and then to reduce the rate at which hosts send data just
before packets start being discarded. We call such a strategy congestion
avoidance, to distinguish it from congestion control.



