
L5: Threads

Topics
Multi-threading

Condition Variables
Pre-emption

Sam Madden

6.033 Spring 2014

Strawman Acquire/Release

 acquire(L): ## strawman design
 while L != 0:
 do nothing
 L ß 1

 release(L):
 L ß 0

Race condition!
CPU1 CPU2
Acquire(L) Acquire(L)

Both see L == 0, both think
they have acquired

Atomic Instructions to The
Rescue

XCHG reg,addr:
 tmp ß Mem[addr]
 Mem[addr] ß reg
 reg ß temp

Processor does
this atomically

 acquire(L): ## correct design
 do:
 r ß 1
 XCHG r, L
 while r==1

If L is 0, after XCHG, r will be 0, and loop
will terminate

Otherwise, someone else is holding L, and
need to keep trying

Recall: send with locking

send(bb, m):
 acquire(bb.send_lock)
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] ← m
 bb.in ← bb.in + 1
 release(bb.send_lock)
 return

send(bb, m):
 acquire(bb.lock)
 while True:
 if bb.in – bb.out < N:
 … // enqueue message & return
 release(bb.lock)
 yield()
 acquire(bb.lock)

receive(bb):
 acquire(bb.lock)
 while True:
 if bb.in > bb.out:
 … // dequeue message & return
 release(bb.lock)
 yield()
 acquire(bb.lock)

Send and receive with yield

yield():
 acquire(t_lock)
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 do:
 id = (id + 1) mod N
 while threads[id].state ≠ RUNNABLE

 threads[id].state = RUNNING
 PTR = threads[id].ptr
 SP = threads[id].sp
 cpus[CPU].thread = id
 release(t_lock)

yield():
 acquire(t_lock)
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 do:
 id = (id + 1) mod N
 while threads[id].state ≠ RUNNABLE

 threads[id].state = RUNNING
 PTR = threads[id].ptr
 SP = threads[id].sp
 cpus[CPU].thread = id
 release(t_lock)

suspend
current
thread

suspend
current
thread

choose
new
thread

yield():
 acquire(t_lock)
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 do:
 id = (id + 1) mod N
 while threads[id].state ≠ RUNNABLE

 threads[id].state = RUNNING
 PTR = threads[id].ptr
 SP = threads[id].sp
 cpus[CPU].thread = id
 release(t_lock)

suspend
current
thread

choose
new
thread

resume
new
thread

yield():
 acquire(t_lock)
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 do:
 id = (id + 1) mod N
 while threads[id].state ≠ RUNNABLE

 threads[id].state = RUNNING
 PTR = threads[id].ptr
 SP = threads[id].sp
 cpus[CPU].thread = id
 release(t_lock)

Send with yield, again
send(bb, m):

 acquire(bb.lock)
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] ← m
 bb.in ← bb.in + 1
 release(bb.lock)
 return
 release(bb.lock)
 yield()
 acquire(bb.lock)

Send with wait / notify
send(bb, m):

 acquire(bb.lock)
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] ← m
 bb.in ← bb.in + 1
 release(bb.lock)
 notify(bb.empty)
 return
 release(bb.lock)
 yield()
 acquire(bb.lock)
 wait(bb.full, bb.lock)

wait(cvar, lock):
 acquire(t_lock)
 release(lock)
 threads[id].cvar = cvar
 threads[id].state = WAITING
 yield_wait() # will be a little different than yield
 release(t_lock)
 acquire(lock)

Wait and notify

wait(cvar, lock):
 acquire(t_lock)
 release(lock)
 threads[id].cvar = cvar
 threads[id].state = WAITING
 yield_wait() # will be a little different than yield
 release(t_lock)
 acquire(lock)

notify(cvar):

 acquire(t_lock)
 for i = 0 to N-1:
 if threads[i].cvar == cvar && threads[i].state == WAITING:
 threads[i].state = RUNNABLE
 release(t_lock)

Wait and notify

Recall: original yield

suspend
current
thread

choose
new
thread

resume
new
thread

yield():
 acquire(t_lock)
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 do:
 id = (id + 1) mod N
 while threads[id].state ≠ RUNNABLE

 threads[id].state = RUNNING
 PTR = threads[id].ptr
 SP = threads[id].sp
 cpus[CPU].thread = id
 release(t_lock)

yield_wait():
 acquire(t_lock)
 id = cpus[CPU].thread
 threads[id].state = RUNNABLE
 threads[id].sp = SP
 threads[id].ptr = PTR

 do:
 id = (id + 1) mod N
 while threads[id].state ≠ RUNNABLE

 threads[id].state = RUNNING
 PTR = threads[id].ptr
 SP = threads[id].sp
 cpus[CPU].thread = id
 release(t_lock)

Yield for wait, first attempt

yield_wait():
 id = cpus[CPU].thread
 threads[id].sp = SP
 threads[id].ptr = PTR
 SP = cpus[CPU].stack

 do:
 id = (id + 1) mod N
 release(t_lock)
 acquire(t_lock)
 while threads[id].state ≠ RUNNABLE

 threads[id].state = RUNNING
 PTR = threads[id].ptr
 SP = threads[id].sp
 cpus[CPU].thread = id

Yield for wait

Switch to
this CPUs
kernel stack

choose new
thread, but
allow other
CPUs to notify()

resume
new
thread

timer interrupt
 Timer interrupt:
 push PC ## done by CPU
 push registers ## not a function call, so can't assume
 ##compiler saves them
 yield()
 pop registers
 pop PC

What happens if timer interrupt occurs when CPU is
running yield / yield_wait?

Solution: Disable timer interrupts before entering/exiting yield

t_lock held è thread blocks forever

Summary

l  Threads allow running many concurrent
activities on few CPUs

l  Threads are at the core of most OS designs

l  Explored some of the subtle issues with threads

l  yield, condition variables, preemption, …

