L3: Operating Systems

Sam Madden
madden@csail.mit.edu
6.033 Spring 2014




OS: New topic [4 lectures]

Case study of widely-used system
— Virtual memory system, file system, processes,

lllustrates ideas from first lectures:

— OSs supports client/server computing within a
single computer

— OSs have a naming system

Introduce new ideas and techniques: kernel,
files, locks, etc.

Example: UNIX (Linux, BSDs, etc.)



Virtualizing Memory



Running a single program

Main memory

CPU

for (:2) { Instruction
next instruction [<=—p>

} data

 Memory holds instructions and data
 CPU interpreter of instructions



32-bit x86 implementation

31 Instruction Pointer 0

EIP

Instruction

data

 EIP is incremented after each instruction

* Instructions are different length

2321

« EIP modified by CALL, RET, JMP, and conditional JMP



Several programs

CPUs .
Main memory

- femeen ™
)
Instruction P2

< Data P1
Data P2

Problem: no boundaries!



Problem: no boundaries
Main memory

Program 1 on CPU1

31 Instruction Pointer 0 232-1
- Program1
| Program 2
>
Program 2 on CPU2 Data for P1
31 Instruction Pointer 0
cp | Data for P2
0

e A program can modify other programs data
e A program jumps into other program’s code
e A program may get into an infinite loop




Approach: memory virtualization

31

Instruction Pointer

Virtual
address

0

EIP

Virtual|address

MMU

0x1000

Physical%ddress Address

232.1

0
232.1

0

) Page Table

Programl

Data for P1

Program 2
Data for P2

Table for P1

Table for P2

Physical
memory

232.1

0x8000
0x1000
0

e« P1: LD rO, 0x0000 translated with Table 1
e« P2: LD rO, 0Ox0000 translated with Table 2



Page table records mapping

Memory
31 Instruction Pointer 0
EIP '
—
MMU Progl PT
T 0 |0x1000
: , Prog2 PT
Page- t >
age-map register 0 1 0x2000

e Each program has its own translation map
- Physical memory doesn’t have to be contiguous

e Prog1: 0x0000 -> 0x1000
e Prog2: 0x0000 -> 0x2000



Space-efficient map

Address |Page # Offset

20 bits 12 bits

Virtual page | Physical page
3

0
4
5

WIN = O

20 bits 12 bits
OX{OOOOZH14§ -2 4 * 4096 + 0x148 = 0x00004148




31

x86 page table entry

12 11 9

8

6

5

Physical-Page Base Address AVL

G

- > 0| -

D

O MmN ol &

- = wo| w

wv~ C N

=— =] -

« R/W: writable?
- Page fault when W = 0 and writing

e U/S: user mode references allowed?

- Page fault when U = 0 and user references address

e P: present?
- Page fault when P =0




Kernel Manages Page Maps,
Interrupts



Handling Interrupts

Interrupt(x):
u’k € Kk
handler = handlers|x]
call x
iret //sets u/k to u

Page faults are a kind of interrupt
Interrupts can also be called directly



OS Abstractions



: File system is an abstraction of raw disk
main() { Apps not allowed to access raw disk!

int fd, n;
char buf[512];

chdir("/usr/kaashoek");

fd = open("quiz.txt", 0);
n = read(fd, buf, 512);
write(1, buf, n);
close(fd);



Summary

 Two key OS techniques
— Virtualization allows programs to share hardware
— Abstractions provide portability, cooperation
« See Unix paper
* OS kernel enforces modularity
— Program vs program
— Program vs kernel



