
L3: Operating Systems

Sam Madden
madden@csail.mit.edu

6.033 Spring 2014

OS: New topic [4 lectures]
•  Case study of widely-used system

– Virtual memory system, file system, processes,
•  Illustrates ideas from first lectures:

– OSs supports client/server computing within a
single computer

– OSs have a naming system
•  Introduce new ideas and techniques: kernel,

files, locks, etc.
•  Example: UNIX (Linux, BSDs, etc.)

Virtualizing Memory

Running a single program

•  Memory holds instructions and data
•  CPU interpreter of instructions

for (;;) {
 next instruction
}

instruction

data

CPU
Main memory

32-bit x86 implementation

•  EIP is incremented after each instruction
•  Instructions are different length
•  EIP modified by CALL, RET, JMP, and conditional JMP

instruction

data

0

232-1

Several programs

for (;;) {
 next instruction
}

Instruction P1

Instruction P2

Data P2
Data P1

CPUs
Main memory

for (;;) {
 next instruction
}

Problem: no boundaries!

Problem: no boundaries

•  A program can modify other programs data
•  A program jumps into other program’s code
•  A program may get into an infinite loop

0

232-1

Program1

Program 2

Data for P2

Data for P1

Main memory Program 1 on CPU1

Program 2 on CPU2

Approach: memory virtualization

•  P1: LD r0, 0x0000 translated with Table 1
•  P2: LD r0, 0x0000 translated with Table 2

0x1000

232-1

Program1

Program 2

Table for P1

Data for P2

Data for P1

Table for P2

Virtual
address

Physical
memory

0

232-1

232-1

0 MMU

Physical address

Virtual address

0x8000
0x1000

0

Page Table
Address

Page table records mapping

•  Each program has its own translation map
–  Physical memory doesn’t have to be contiguous

•  Prog1: 0x0000 -> 0x1000
•  Prog2: 0x0000 -> 0x2000

MMU

Page-map register

0
Prog1 PT

0x1000

0
Prog2 PT

0x2000

Memory

Space-efficient map

0x00002148

Page # Offset

20 bits 12 bits

Address

Virtual page Physical page

0 3
1
2
3

0
4
5

20 bits 12 bits

à 4 * 4096 + 0x148 = 0x00004148

x86 page table entry

•  R/W: writable?
–  Page fault when W = 0 and writing

•  U/S: user mode references allowed?
–  Page fault when U = 0 and user references address

•  P: present?
–  Page fault when P = 0

Kernel Manages Page Maps,
Interrupts

Handling Interrupts

Interrupt(x):
 u/k ß k
 handler = handlers[x]
 call x
 iret //sets u/k to u

Page faults are a kind of interrupt
Interrupts can also be called directly

OS Abstractions

main() {
 int fd, n;
 char buf[512];

 chdir("/usr/kaashoek");

 fd = open("quiz.txt", 0);
 n = read(fd, buf, 512);
 write(1, buf, n);
 close(fd);
}

File system is an abstraction of raw disk
Apps not allowed to access raw disk!

Summary

•  Two key OS techniques
– Virtualization allows programs to share hardware
– Abstractions provide portability, cooperation

•  See Unix paper

•  OS kernel enforces modularity
– Program vs program
– Program vs kernel

