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Last Time: Two-Phase Commit

(Not to be confused with two phase locking)

Allows transactions to be run across multiple
distinct nodes (each with their own data)

Key idea:
- prepare all nodes to commit
- atomically commit them via a single log record
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Single-copy consistency

* Operations appear to execute as if there is
only a single copy of the data



Replicated state machine

* A general approach to building consistent
replicas of a server:

— Start with same initial state

— Provide each replica with the same input and in
same order

— Ensure all inputs are deterministic



RSM is hard in practice [comp.risks]

o Leap day 2012, Microsoft's Azure
o Configuration error crashed all servers

o April 2011, Amazon's EC2
o Replication storm exhausted all storage

o September 2010, Facebook clients
o Clients overwhelmed database after misconfig.
o September 2009, Google's gmail

o Request routers overloaded

Complete outages




RSM with view server

Primary must wait for backup to accept each
request

Non-backup must reject forwarded requests
Non-primary must reject direct client requests

Primary in view i must have been primary or
backup in view i-1

New backups copy state from primary



RSM w/ View Server Example
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Summary

« Single-copy consistency
o Replicated state machine

o Consensus with view server

« Wednesday: distributed consensus



