L19: Replicated state machines

Sam Madden
6.033 Spring 2014



Last Time: Two-Phase Commit

(Not to be confused with two phase locking)

Allows transactions to be run across multiple
distinct nodes (each with their own data)

Key idea:
- prepare all nodes to commit
- atomically commit them via a single log record



Two Phase Commit

Coordinator Worker

Commit prepare After prepare,

. worker cannot
point Log prepare . .
yes decide xaction

outcome on its

It all yes, lo
4 g own.

commit

commit Even if it crashes,

it must recover
ack Log commit into prepared

state!
Log done



Single-copy consistency

* Operations appear to execute as if there is
only a single copy of the data



Replicated state machine

* A general approach to building consistent
replicas of a server:

— Start with same initial state

— Provide each replica with the same input and in
same order

— Ensure all inputs are deterministic



RSM is hard in practice [comp.risks]

o Leap day 2012, Microsoft's Azure
o Configuration error crashed all servers

o April 2011, Amazon's EC2
o Replication storm exhausted all storage

o September 2010, Facebook clients
o Clients overwhelmed database after misconfig.
o September 2009, Google's gmail

o Request routers overloaded

Complete outages




RSM with view server

Primary must wait for backup to accept each
request

Non-backup must reject forwarded requests
Non-primary must reject direct client requests

Primary in view i must have been primary or
backup in view i-1

New backups copy state from primary



RSM w/ View Server Example

1: R1, R2

View Server

4

Replica 1

Replica 2

View:
1: R1, R2

View:
1: R1, R2



Client

View:
1: R1, R2

Get view

1: R1, R2

View Server

Send request to
primary

4

View:
1: R1, R2

Replicall

Send request to
backup

View:
1: R1, R2

Replica 2



View:
1: R1, R2

Client

1: R1, R2

View Server

x/ Replica 1

4

Replica 2

View:
1: R1, R2

View:
1: R1, R2



Client

View:
1: R1, R2
Send request to
primary
View:
1: R1, R2
1: R1, R2 Reglicall
2:R2, -- Send request to
backup
v
View Server View:
1: R1, R2

Replica 2



View:
1: R1, R2

Client

1: R1, R2
2:R2, --

View Serve

Replica 1

r

Vaa

Replica 2

View:
1: R1, R2

View:
1: R1, R2



Client

View:
1: R1, R2

1: R1, R2
2:R2, --

View Server

Send request to
Replica 1

View:
1: R1, R2

Rer lica|l Error!

Send request to

Replica 2
v
View:
2:R2, --
Replica 2

Replica 2 refuses to
process request



View:
1: R1, R2

Client

1: R1, R2
2:R2, --

View Server

Replica 1

Replica 2

View:
1: R1, R2

View:
2:R2, --



Client

View:
1: R1, R2

Get view

1: R1, R2
2:R2, --

View Server

View:
1: R1, R2

Replica 1

4

View:
2:R2, --

Replica 2



Client

View:
2:R2, --

Get view

1: R1, R2
2:R2, --

View Server

View:
2:R2, --

Replica 1

4

View:
2:R2, --

Replica 2



Client

View:
2:R2, --
Send request to
primary
View:
2:R2, --
1: R1, R2 Replicall
2:R2, -- Send request to
backup
v
View Server View:
2:R2, --

Replica 2



Summary

« Single-copy consistency
o Replicated state machine

o Consensus with view server

« Wednesday: distributed consensus



