6.033 Lecture 17: Isolation
4/9/2014

Recap : Log Based Recovery

 Keyidea: keep a log of actions, then use log
to recover state of system

On disk data structures

A 100
B 50

Cell storage

TL | WA(80/100) |WB(50/70) |ENDT1 T2 .

Log (Before/After) values

Recap : Log Based Recovery

 Keyidea: keep a log of actions, then use log
to recover state of system

On disk data structures

p reads (of=]] Value

A 100
>
writes B 50
Cell storage

TL | WA(80/100) |WB(50/70) |ENDT1 T2 .

Log

Recap : Log Based Recovery

 Keyidea: keep a log of actions, then use log
to recover state of system

On disk data structures

p reads (of=]] Value

A 100
>
B 50

writes

WAL: Write Cell storage
first to log

then to cell WA(80/100) |WB (50/70) |ENDTL |T2 |.. |

store Log

Recap : Log Based Recovery

 Keyidea: keep a log of actions, then use log
to recover state of system

On disk data structures

p reads (of=]] Value

> A 100 Problem — if we crash before
B 50 commit, there may be
uncommitted data in cell store

writes

WAL: Write Cell storage
first to log

then to cell WA(80/100) |WB (50/70) |ENDTL |T2 |.. |

store Log

Recap : Log Based Recovery

 Keyidea: keep a log of actions, then use log
to recover state of system

On disk data structures

p reads (of=]] Value

> A 100 Problem — if we crash before
B 50 commit, there may be
uncommitted data in cell store

writes

WAL: Write Cell storage

first to log
then to cell WA(80/100) |WB (50/70) |ENDTL |T2 |.. |
store

Log P

Solution: use log to UNDO using before values

Recap : Log Based Recovery

 Keyidea: keep a log of actions, then use log
to recover state of system

writes

WAL: Write
first to log
then to cell
store

On disk data structures

I -
S < async writes

A
B

100
50

Cell storage

reads

>

writes

(of=]] Value

A 100
B 50

Optimization: in memory cache

-_

Log

Recap : Log Based Recovery

 Keyidea: keep a log of actions, then use log

to recover state of system

writes

WAL: Write
first to log
then to cell
store

On disk data structures

Cell Value € .
- async writes

A
B

100
50

Cell storage

reads

Problem — crash, some writes from
committed transactions may not
have been written to disk

>

writes

(of=]] Value

A 100
B 50

Optimization: in memory cache

-_

Log

Recap : Log Based Recovery

 Keyidea: keep a log of actions, then use log

to recover state of system

writes

WAL: Write
first to log
then to cell
store

On disk data structures

Cell Value € .
- async writes

A
B

100
50

Cell storage

reads

Problem — crash, some writes from
committed transactions may not
have been written to disk

>

writes

A 100 writes of
committed

B >0 transactions in
log

Optimization: in memory cache

--_

Log unDe

> REDO

Recap: Checkpoints

* Problem: log may be very large
 When can we truncate?

* Simple solution:
— Wait for outstanding transactions to complete
— Don’t start new transactions until

* Flush of in memory cell cache is complete
* Log is truncated

Concurrent Actions

xfer(a, b, amt):
begin
a=a—amt
b=Db+amt
commit

interest(rate):
begin
for each account x:
X =X * (1+rate)
commit

Conflict Serializability

Given two transactions T1 & T2.
For a read of object o in T1, conflicts = {writes of o in T2}

For a write of object 0 in T1, conflicts = {reads or writes of o in T2}

For two transactions T1 & T2, a schedule is serial equivalent if:

* Every conflicting read or write in T1 is ordered before the
operation it conflicts with in T2,

OR
 Every conflicting read or write in T1 is ordered after the operation

it conflicts with in T2

Testing for Serializability

xfer: int:
1 RA [100] (before 6)
5 RA [100]
2 WA [90] (after 5)
6 WA [110]
7 RB [50]
8 WB [60]
3 RB [60]

4 WB [66]

Locking Protocol

Read(T, var):
if var.lock not held by T:
acquire(T, var.lock)
return var.value

Write(T, var, newval)
if var.lock not held by T:
acquire(T, var.lock)
var.val = newval //write log record

Locking Protocol w/ Release

Read(T, var):
if var.lock not held by T:
acquire(T, var.lock)
return var.value

Write(T, var, newval)
if var.lock not held by T:
acquire(T, var.lock)
var.val = newval //write log record

Commit(T):
write commit record for T
release all locks for T

Locking w/ Reader-Writer Locks

Read(T, var):
if var.lock not held by T:
acquire_reader(T, var.lock)
block if any writers
return var.value

Write(T, var, newval):
if var.lock not held as writer by T:
acquire_writer(T, var.lock)
block if any readers or writers
var.value = newval //and write log record

T1

Read committed

Table of doctors w/ names and whether on call

begin

update doctors set

oncall=true where name =
'bob’
commit

W/ serializable, T1 will wait for T2

W/ read committed, T2 will release read lock after select, which will allow T1 to run;

T2 will see T1’s update (but do we care)?

T2

begin
select count(*) from doctors
where oncall=true

select count(*) from doctors
where oncall=true

