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4/9/2014



Recap : Log Based Recovery

 Keyidea: keep a log of actions, then use log
to recover state of system

On disk data structures
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Recap: Checkpoints

* Problem: log may be very large
 When can we truncate?

* Simple solution:
— Wait for outstanding transactions to complete
— Don’t start new transactions until

* Flush of in memory cell cache is complete
* Log is truncated



Concurrent Actions

xfer(a, b, amt):
begin
a=a—amt
b=Db+amt
commit

interest(rate):
begin
for each account x:
X =X * (1+rate)
commit



Conflict Serializability

Given two transactions T1 & T2.
For a read of object o in T1, conflicts = {writes of o in T2}

For a write of object 0 in T1, conflicts = {reads or writes of o in T2}

For two transactions T1 & T2, a schedule is serial equivalent if:

* Every conflicting read or write in T1 is ordered before the
operation it conflicts with in T2,

OR
 Every conflicting read or write in T1 is ordered after the operation

it conflicts with in T2



Testing for Serializability

xfer: int:
1 RA [100] (before 6)
5 RA [100]
2 WA [90] (after 5)
6 WA [110]
7 RB [50]
8 WB [60]
3 RB [60]

4 WB [66]



Locking Protocol

Read(T, var):
if var.lock not held by T:
acquire(T, var.lock)
return var.value

Write(T, var, newval)
if var.lock not held by T:
acquire(T, var.lock)
var.val = newval //write log record



Locking Protocol w/ Release

Read(T, var):
if var.lock not held by T:
acquire(T, var.lock)
return var.value

Write(T, var, newval)
if var.lock not held by T:
acquire(T, var.lock)
var.val = newval //write log record

Commit(T):
write commit record for T
release all locks for T



Locking w/ Reader-Writer Locks

Read(T, var):
if var.lock not held by T:
acquire_reader(T, var.lock)
# block if any writers
return var.value

Write(T, var, newval):
if var.lock not held as writer by T:
acquire_writer(T, var.lock)
# block if any readers or writers
var.value = newval //and write log record



T1

Read committed

Table of doctors w/ names and whether on call

begin

update doctors set

oncall=true where name =
'bob’
commit

W/ serializable, T1 will wait for T2

W/ read committed, T2 will release read lock after select, which will allow T1 to run;

T2 will see T1’s update (but do we care)?

T2

begin
select count(*) from doctors
where oncall=true

select count(*) from doctors
where oncall=true



