Introduction to Wireless Networks

Dina Katabi & Sam Madden MIT - 6.033 - Spring 2014

Wireless Computer Networks

- Wireless LANs
 - An Access Point (AP) which forwards packets to/from client nodes

- One hop
- Muti-hop Wireless Networks
 - Stationary/Mobile nodes
 - Nodes route packets for each other
 - A multi-hop network

Wireless Transmission

- Sender has a radio range:
 - Only nodes within radio range can hear transmission
 - E.g., B hears A's transmission but C doesn't hear

- If nearby nodes transmit simultaneously → collision
 - Padio cannot transmit and receive
- Radio cannot transmit and receive simultaneously

 Use the lack of ack to
 Illigion

Frequency

Carrier Sense Multiple Access (CSMA)

How it works (simplified)

- 1. listen before transmitting to ensure the medium is idle
- 2. When the medium becomes idle, pick a random slot out of 32 possible slots and transmit
- 3. If the receiver does not ack the packet, back off for a short random interval and retransmit
- 4. Repeat steps 1-3 until receiver acks packet, or we exceed the number of retrials, and every time double the backoff interval

Problem with CSMA

Hidden Terminal Problem

- Nodes are little less than a radio range apart
- CSMA: Node listen to determine medium is idle before transmitting
 - But, C can't hear A. So it will transmit while A is transmitting; COLLISION at B.
- CSMA is insufficient to detect all transmissions on the wireless medium
- The problem: collisions happen at the receiver, but carrier sense is performed by the sender

Exposed Terminal Problem

- B wants to deliver a packet to A
- C's transmission would not cause collision at A, but C will refuse to transmit while B is transmitting to A
- Exposed terminal reduces efficiency
- Problem is caused by: collisions happen at the receiver, but carrier-sense is performed by the sender

RTS (request to send) and CTS (clear to send)

- How does RTS-CTS work?
 - Node that hears the RTS defers until the transmission of the CTS
 - Node that hears the CTS defers until the transmission of data
- Solves the hidden terminal problem [why?]
- Solves the exposed terminal problem [why?]
- RTS and CTS can still collide at their receivers but is less likely since they are shorter

Bit Rate

- Capacity = BW log (Signal Power at Rx/Noise)
- Transmission bit rate has to be less than capacity otherwise receiver can't decode
- How to pick the bit rate?
 - 802.11 has a few options for bit rates (e.g., 6 Mb/s, 9 Mb/s, ..., 54Mb/s)
 - Transmitter tries different bit rates and picks the bit rate that achieves the highest throughput (after accounting for packet loss)

Summary

- Carrier Sense Multiple Access (CSMA)
- Hidden terminal
- Exposed terminal
- RTS and CTS
- Bit rates

Video Demo http://www.youtube.com/watch? v=sbFZPPC7REc

