
TCP Congestion Control

Dina Katabi & Sam Madden

nms.csail.mit.edu/~dina

6.033, Spring 2014

Sharing the Internet

How do you manage resources in a huge system
like the Internet, where users with different
interests share the same links?

Difficult because of:

 Size
 Billions of users, links, routers

 Heterogeneity
 bandwidth: 9.6Kb/s (then modem, now cellular), 10 Tb/s

 latency: 50us (LAN), 133ms (wired), 1s (satellite), 260s (Mars)

Congestion
S1

S2

R1 D

10Mb/s

2Mb/s

100Mb/s

S1

S2

 Sources compete for link
bandwidth, and buffer space

 Why a problem?
 Sources are unaware of current state of resource
 Sources are unaware of each other

 Manifestations:
 Lost packets (buffer overflow at routers)
 Long delays (queuing in router buffers)
 In many situations will result in < 2 Mb/s of throughput for the

above topology (congestion collapse)

Objectives of Congestion Control
Efficiency & Fairness

 Efficiency
 Maximize link utilization

 Minimize queue size (i.e., delay)

 Minimize packet drops

 Many solutions!
 (S1= 1 Mb/s, S2= 1 Mb/s) and (S1=1.5

Mb/s, S2=0.5 Mb/s) are both
efficient.

 Want Fairness

S1

S2

R1 D

10Mb/s

2Mb/s

100Mb/s

Fairness

Max-Min Fairness
 At each bottleneck,

user gets min(user’s
demand, fair share)

 User’s rate is the
minimum max-min fair
rate along the path

S1

S2 R1 D

9Mb/s

S2

1= 1Mb/s
2= 7Mb/s
3= 

Demands

1= 1Mb/s
2= 4Mb/s
3= 4Mb/s

Max-min
Fair Rates

TCP

TCP

 TCP provides reliability & congestion control

 Reliable transmission ensures the receiver’s
application receives the correct and complete
data sent by the sender’s application

 TCP recovers from lost packets, eliminates
duplicates and ensures in-order packet delivery to
the application

 Reliability was discussed in 6.02

 Congestion control

 Sender reacts to congestion and discovers its fair
and efficient send rate

TCP Cong. Cont.

 Basic Idea:

 Send a few packets. If a packet is dropped
decrease rate. If no drops, increase rate

 How does TCP detect drops?
 Packets have sequence numbers

 Receiver acks the next expected sequence number (i.e., if
received 1, it acks 2 saying it is expecting 2 to arrive next.
Note that TCP implementations ack bytes but for simplicity we
talk about acking packets.)

TCP controls throughput via the
congestion window

 Congestion window is the number of outstanding
packets, i.e., number of packets sender can send
without waiting for an ack

 TCP is window-based: sources change their sending
rate by modifying the window size: “cwnd”
 Avg. Throughput = (Avg. cwnd) /(Avg. RTT)

 Why not changing rate directly?

 Window protocols are easy to implement (no need for

accurate timers, i.e., works for slow machines an sensors)

How much should TCP Increase/decrease?

 Probe for the correct sending window

 Additive Increase / Multiplicative
Decrease (AIMD)
 Every RTT:

 No loss: cwnd = cwnd + 1

 A loss: cwnd = cwnd /2

Additive Increase

D A

Src

Dest

cwnd = 1

cwnd += 1
cwnd = 2

D D A A

cwnd = 3

D D A A D A

cwnd = 4

Actually,

 On ack arrival: cwnd = cwnd + 1/cwnd

 On timeout: cwnd = cwnd /2

AIMD Leads to Efficiency and Fairness

User 1: x1

U
se

r
2

:
x

2

fairness
line

Efficiency line
(x1+x2 = BW)

(x1,x2)

(bx1,bx2)

(bx1+a,bx2+a)

TCP AIMD

Time

Congestion
Window

Grab back
Bandwidth

Halve Congestion
Window (and Rate)

Timeout because
of a packet loss

correct
cwnd

Need the queue to absorb these saw-tooth oscillations

“Slow Start”

D A D D A A D D

A A

D

A

Src

Dest

D

A

1 2 4 8

A A A A

 Cold start a connection at startup or after a timeout

 At the beginning of a connection, increase
exponentially

 On ack arrival: cwnd += 1

Adding Slow Start

Time

Exponential
Increase

Loss+Timeout

Slow start stops at halve
previous cwnd

Congestion
Window

AIMD

Fast Retransmit
 Timeouts are too slow

 When packet is dropped, receiver still acks the
next in-order packet

 Use 3 duplicate ACKs to indicate a drop
 Why 3? When this does not work?

Tweaking TCP

Fast Recovery
 If there are still ACKs coming in then no need for

slow-start

 Divide cwnd by 2 after fast retransmit

 Increment cwnd by 1/cwnd for each dupack

Putting It Together

Time

Congestion
Window

Putting It Together

Time

Congestion
Window

Slow Start

Putting It Together

Time

Congestion
Window

3 dupacks (Fast Retransmit)

Putting It Together

Time

Congestion
Window

Fast Recovery

TCP Steady-State Throughput as
Function of Loss Rate

W(t)

Wm

Wm/2

1 drop

time

 RTT * Wm/2

pkt
WW mm

22

222

1

















 23

8

mW
p 1 drop every so, drop rate is:

Throughput  is the
packets sent divided by
the time it took to send
them

RTT

Wm

4

3


From the two eq.

pRTT

2/3


Reflections on TCP

 The probing mechanism of TCP is based on
causing congestion then detecting it

 Assumes that all sources cooperate

 Assumes flows are long enough

 Too bursty

 Vulnerable to non-congestion related loss (e.g.
wireless errors)

 Unfair to long RTT flows

