L1: Complexity,
Enforced Modularity, and
client/server organization

Sam Madden and Dina Katabi

6.033 Spring 2014
http://web.mit.edu/6.033

DDDDDDDDDD

http://web.mit.edu/6.033

e Schedule has all assignments
* Every meeting has preparation/assignment

* On-line registration form to sign up for section
and tutorial times

* We will post sections assignment this evening

Tuesday Wednesday Thursday

feb 3 feb 4

Reg day REC 1: Worse is Better
Preparation: Read Worse is Better
Assigned: Hands-on DNS

feb 6 feb 7
REC 2: Therac-25 TUT 1: Writing program section (run
Preparation: Therac-25 paper by Cl and TAs)

Assigned: Memo #1

feb 5

LEC 1: Enforced Modularity and

Client/server Organization
Preparation: Book sections 1.1-1.5,

First day of classes and 4.1-4.3
feb 10 feb 11 feb 12 feb 13 feb 14
LEC 2: Naming REC 3: DNS LEC 3: Operating systems REC 4: UNIX TUT 2: Design project 1 (run by TAs)
Preparation: Book sections 2.2, and | Preparation: Book section 4.4: "Case @ Preparation: Book sections 5.1, 5.3, | Preparation: Unix paper Preparation: Book section 2.5: "Case
3.1 study: The Internet Domain Name and 5.4 study: UNIX File System Layering and
System (DNS) Naming"
DUE: Hands-on DNS DUE: Memo #1

Assigned: Hands-on UNIX

What is a system?

System = Interacting set of components with a
specitied behavior at the interface with its
environment

Examples: Web, Linux

6.033 : study and design of systems, their
components, and internals

6.033 Approach

Lectures/book: big ideas and examples

Hands-ons: play with successful systems
Recitations: papers describing successful systems
Design projects: you practice designing and writing
* Design: choose problem, tradeoffs, structure

* Writing: explain core ideas concisely

Exams: focus on reasoning about system design

Why is building systems hard?

Example Complex System: Linux Kernel

e 1975 Unix kernel: 10,500 lines of code

e 2008 Linux 2.6.24 line counts:
85,000 processes
430,000 sound drivers
490,000 network protocols
710,000 file systems
1,000,000 different CPU architectures
4 000,000 drivers
7,800,000 Total

Emergent Property Example: Ethernet

e All computers share single cable
e Goal is reliable delivery
* Listen while sending to detect collisions

Ethernet
00011011

i Max len 1km i

Emergent Property Example: Ethernet

e All computers share single cable
e Goal is reliable delivery
* Listen while sending to detect collisions

Ethernet
00011011 ?@PENe2@Q7@ 1101100

i Max len 1km i

Does Collision Detection Work?

00011011 1101100

Max len 1km
A B

What if A finishes sending before data from B arrives?
Can this happen?

1 km at 60% speed of light = 5 microseconds
Original Ethernet Spec: 3 Mbit / sec
=> A can send 15 bits before bit 1 arrives at B
= A must keep sending for 2 * 5 microseconds
(To detect collision when first bit from B arrives)
=> Minimum packet size is 5* 2 * 3 = 30 bits
Default header is 5 bytes (40 bits), so no problem!

3 Mbit/s & 10 Mbit/s

e First Ethernet standard: 10 Mbit/s, 2.5 km wire
e Must send for 2*12.5 useconds = 250 bits @ 10 Mb/s
 Header was 14 bytes

> Needed to pad packets to at least 250 bits (32 bytes)

Emergent property: Minimum packet size!

A computer system scaling example

ARPA NETWORK, LOGICAL MAP, SEPTEMBER 1973

SRI LLe LAt UTaM L LINOYS POP-O z/r- POP-10
316 316
@ e IMP INP TIP IMP v
P - 16
POPIQ \ rerox (MAXC) Ser T,
P @ TIP }—~(POP-10
a3 IMP 404.4.:
. RADC / POP-10
350/67)— TIP rrMSHARE case |Tip @ sen _|aew(POP-]
TIP 1% TIP — 1MP
Gwe
ol o
TIP oocal'”
ocs CARNEGIE
TIP .
. P
HAWAII AMES use POP-10)— M NARVARD
TIP aad NP ;‘ TP \ IMP
BELVOIR ABEROEEN
00P-518 e
Q MP IMP
STANFORD @ \ conc
S 360/44 TIP . TIP
\ wiTRE
TIP| |TIP
arAd
TIP
usc-
151 pom \
POP-10)—] IMP - -

NORSAR

Scaling the Internet

e Size routing tables (for shortest paths): O(n?)
® Hierarchical routing on network numbers

e Address: 16 bit network # and 16 bit host #
e Limited networks (2'9)

=» Network Address Translators and IPvé

Example: No Small Changes

Phone network features CF CF
e Call Forwarding ‘

e Call Number Delivery Blocking ’\)
e Automatic Call Back ??

e [temized Billing

CNDB ACB +IB e A calls B, B is busy

e Once B is done, B
‘ ‘ calls A

e A's number on
appears on B’s bill

How can we mitigate the
complexity of building systems?

Enforcing Modularity with Client/
Server

Remote Procedure Call

Web Client

def main:
html= load(URL

render(html)

)
i1

def loadStubClient:

msg € URL
send request
wait for reply
html € reply
return html|

Stub

Web Server

def serverLoad(URL):

.r.e.t.u rn html I l

request

reply

e Stubs make client/server loo

def loadStubServer:
wait for requst
URL € request

html= serverLoad (URL)
reply € html|

send reply Stub

< like procedure calls!

e Stubs can be automatically generated

RPC != PC

Load(”view.htm|?bieberAloum”) = HTML
Load("buy.html?bieberAlbum&ccNo=xxx")

Client server

Challenge 1: network looses requests

Client Server

Load(”VieW. htm’”)

——

Load(”VieW. htm’”)

time /

v

Retry

v

* Approach: Retry after time out
® Doesn't work for buy.htm|

Soln: Filter Duplicate Requst

Client Server
Load(”bu_y,htm,n) Saved Responses
I—y - - -
Retry
Load(”buy.htm,,,)
1 Replay result from table -
time don’t reprocess order!

-

v v

e \What if server fails?

Challenge 2: server fails

e “Unknown” outcome for load(”buy.html”)
Did the server process the request or not?

* Removing “unknown” outcome requires
heavy-duty techniques

Topic for April

* Practical solution: Expose that RPC != PC
RPC caller must handle “serverFailed” exception

Summary so far

e Complexity makes building systems difficult
* Modularity and abstraction bound complexity

e Can enforce modularity through client/server

* Remote procedure call simplifies C/S
e Unfortunately, RPC = PC

* Failures will be a central challenge in 6.033
e No algorithm for successful system design

Example 6.033 systems

Therac-25

bad design, at many levels. detailed post-mortem
UNIX

The Internet
MapReduce

Relational Databases

Class plan

e Client/server: Naming
* Operating systems:
e Enforced modularity within a machine
e Networks:
e Enforced modularity between machines
e Reliability and transactions:

e Handing hardware failures

e Security: handling malicious failures

