
Lecture 18 Multi-site Atomicity April 14, 2014
Recap last time:

Serializability Testing

Isolation via two-phase locking

[Show slides]

Possibility for deadlocks

[Show slide]

Optimizations: Reader-writer locks

[Show slide]

Relaxed consistency (e.g., read committed)

Don’t always need to enforce serializability, e.g., read committed

[show slide]

Key idea: read-locks are acquired (to prevent reading dirty data), but then released (to
allow concurrent writes)

W/	
 serializable,	
 T1	
 will	
 wait	
 for	
 T2

W/	
 read	
 commi7ed,	
 T2	
 will	
 release	
 read	
 lock	
 a9er	
 select,	
 which	
 will	
 allow	
 T1	
 to	
 run;	
 	
 T2	
 will	
 see	

T1’s	
 update,	
 and	
 get	
 a	
 different	
 count	
 at	
 different	
 Bmes	
 (but	
 do	
 we	
 care)?

Multisite Actions
Example: travel site:

Suppose that JB and USAir are separate reservation systems, each with their own data.

There is one coordinator that the user connects to and who makes reservations on
these subsystems. Diagram (with internet)

Goal:

Single transaction that spans both JB and USAir.
Should only commit if actions complete on both JB and USAir.

Example
Begin Xaction

Reserve JB
Reserve USair

Commit

Suppose we just treat JB and USAir as separate systems, and send them both a
commit message when ready to commit.

Problem:
Don't want one to commit unless the other has also committed. One might receive

the commit message, other might crash at that instant and decide to abort the
transaction. (See diagram)

Complicated because JB / USAir might crash independently; also messages might be
lost / reordered.

Soln is going to involve getting nodes to agree that they are ready to commit, even if
they crash, and then actually making them commit -- "2 Phase Commit".

Separate logs for each site, including coordinator.

To deal with message losses, going to use a protocol like exactly once RPC.

Diagram:

Basic protocol is as follows:

(1) Coordinator sends tasks to workers; workers log xaction begin and updates just like
normal.

(2) Once all tasks are done, coordinator needs to get workers to enter prepared
(tentatively committed) state

(3) Tentatively committed here means workers will definitely commit if coordinator tells
them to do so; coordinator can unilaterally commit

Protocol (with no loss): (prepare, vote, commit, ack) (show logs)

Suppose messages are lost? Use timeouts to resend prepare, commit messages

Crashes? Need to make sure that logs on workers ensure that they can recover into
the tentatively committed state.

Log records:
Write prepare record on workers before "Yes" vote.

Commit record still written on coordinator -- that is commit point of the whole transaction

Coordinator also writes a "done" message

Suppose worker crashes:
Before prepare (2)

After prepare (3)

After receiving commit (5)

Suppose coordinator crashes:
Before prepare (1)

After sending some prepares -- Aborts

After writing commit (4)

After writing done (6)

How does coordinator respond to "TX?" inquiry? Does it keep state of all xactions
forever? (No -- once it has received acks from all workers, it knows they have received
outcome.)

Notice that workers cannot forget state of transaction until after they hear commit / abort
from coordinator, even if they crash. This makes protocol somewhat impractical in
cross-organizational settings.

What to do instead?
Use compensating actions (e.g., airlines will allow you to cancel a purchase free of
charge within a few hours of making a reservation.)

2PC provides a way for a set of distributed nodes to reach agreement (e.g., commit or
abort.) Note, however, that it only guarantees that all nodes eventually learn about
outcome, not that they agree at the same instant.

"2 Generals Paradox" (slides)
Can never ensure that agreement happens in bounded time (though it will eventually
happen with high probability.)

