
Design Project 2:
Virtual Machine Placement
in a Data Center Network

Tiffany Yu-Han Chen

Data Center Network
The network you are using in your DP2

Data Center (DC) Networks

physical machine

M1

- DC networks are organized in a hierarchical way

DC Networks

…..
M1 M2 M3 M1152

- Each physical machine has a unique ID

DC Networks

Group

- These machines are divided into groups

DC Networks

Group

- Machines in the same group are connected with a extremely
fast network connection.

DC Networks

DC Networks

Cluster

DC Networks

Virtual Machines (VMs)

• A physical machine is home to many different VMs

• Each physical machine can host 4 VMs

Virtual machine

Running Jobs in a DC Network

• It’s common to run large computation tasks in
public DCs
• Amazon EC2, Windows Azure

Running Jobs in a DC Network

• It’s common to run large computation tasks in
public DCs
• Amazon EC2, Windows Azure

• User divides the computation into smaller jobs and
puts each job in a VM
• VMs are placed on various physical machines in the DC

• VMs communicate with each other to finish the task

Running Jobs in a DC Network

• It’s common to run large computation tasks in
public DCs
• Amazon EC2, Windows Azure

• User divides the computation into smaller jobs and
puts each job in a VM
• VMs are placed on various physical machines in the DC

• VMs communicate with each other to finish the task

• Users are paying for each VM (!)
• $0.1/min per VM

Summary

• The price of a VM - $0.1/min

VM Placement Problem

VM Placement Problem
• Your app needs multiple VMs, and they can be

located anywhere on the network

VM Placement Problem
• Your app needs multiple VMs, and they can be

located anywhere on the network

• If your app has to transfer a large amount of data,
the network becomes the bottleneck

VM Placement Problem
• Your app needs multiple VMs, and they can be

located anywhere on the network

• If your app has to transfer a large amount of data,
the network becomes the bottleneck

• Connections become slower if other users are
sharing the same path(s) that your traffic is using

VM Placement Problem
• Your app needs multiple VMs, and they can be

located anywhere on the network

• If your app has to transfer a large amount of data,
the network becomes the bottleneck

• Connections become slower if other users are
sharing the same path(s) that your traffic is using

$
$

Your Job
• Given

1. The DC network topology

Your Job
• Given

1. The DC network topology

2. The number of VMs the app uses = n

Your Job
• Given

1. The DC network topology

2. The number of VMs the app uses = n

3. The total amount of data that each pair of VMs will transfer

B =
 [0 10MB 0]

 [2MB 0 3MB]

 [0 0 0]

Your Job
• Given

1. The DC network topology

2. The number of VMs the app uses = n

3. The total amount of data that each pair of VMs will transfer

• Place your VMs to minimize the time until the completion
of the app
• Time ↓ , Cost ↓ ($0.1/min per VM)

B =
 [0 10MB 0]

 [2MB 0 3MB]

 [0 0 0]

Your Job
• Given

1. The DC network topology

2. The number of VMs the app uses = n

3. The total amount of data that each pair of VMs will transfer

• Place your VMs to minimize the time until the completion
of the app
• Time ↓ , Cost ↓ ($0.1/min per VM)

• Adapt the placement in real time to cope with nwk changes
• Arrival/departure of other clients

• Completion of existing task

B =
 [0 10MB 0]

 [2MB 0 3MB]

 [0 0 0]

Available Functions
1. bool place(v, m)

- Place virtual machine v on physical machine m

2. machine_id random_place(v)
- Place virtual machine v on a random physical machine, and
returns that machine's ID

3. int progress(u, v)
- Returns the number of bytes that virtual machines u and v have
left to transfer to each other.

4. int machine_occupancy(m)
- Return the number of VMs currently running on PM m.

5. double tcp_throughput(v)
- Return the throughput of the TCP connection from this VM to
VM v over the last 100ms (passive monitoring)

System Design

System Components
• Measurement – Learn the properties of the paths

between the VMs
• What to measure?

• Available bandwidth? App’s throughput?

• How to measure?
• Active probing/passive monitoring?

• How often to measure?

• Overhead of measurements
• $, traffic

System Components
• Measurement – Learn the properties of the paths

between the VMs
• What to measure?

• Available bandwidth? App’s throughput?

• How to measure?
• Active probing/passive monitoring?

• How often to measure?

• Overhead of measurements

• It takes a few RTTs to get an accurate measurement
• Ex. Measuring the throughput (netperf) takes multiple

seconds

System Components

• Placement – given the measurements, where do
you place the VMs
• How to make the placement decision?

• How do you interact with other users?

• Is everything distributed/centralized?

Straw man #1

 For v in VMs, random_place(v)

Straw man #1

 For v in VMs, random_place(v)
• Ignores other paths that may have significantly higher

throughput

• Does not consider other clients

Straw man #2

Try to put all the VMs in the same group

For each group

 For m in PMs,

 available_vms +=machine_occupancy(m)

 if available_vms >= n

 put all the VMs in this group

Straw man #2

Try to put all the VMs in the same group

For each group

 For m in PMs,

 available_vms +=machine_occupancy(m)

 if available_vms >= n

 put all the VMs in this group

• You may not have enough VMs in one group

Straw man #3 - Straggler
1. Place all VMs randomly

2. Loop repeatedly
a. Collect progress() values between all pairs

b. Compute %progress (using matrix B – total to be transferred)

c. Pick the pair making least %progress
- Move one of the machines to a different random location

Straw man #3 - Straggler
1. Place all VMs randomly

2. Loop repeatedly
a. Collect progress() values between all pairs

b. Compute %progress (using matrix B – total to be transferred)

c. Pick the pair making least %progress
- Move one of the machines to a different random location

• Ignores other paths that may have significantly higher
throughput.

Straw man #4

while more bytes to transfer between any pair of VMs
 pick a pair of VMs that haven't completed their transfers
 place them on the same machine
 complete their transfers

Straw man #4

while more bytes to transfer between any pair of VMs
 pick a pair of VMs that haven't completed their transfers
 place them on the same machine
 complete their transfers

• You may not have enough VMs in one group

• The path between the VMs that you pick may deliver low
throughput.

Some hints…

• Explore better paths by spawning extra VMs
• Tradeoff: cost

Some hints…

• Explore better paths by spawning extra VMs
• Tradeoff: cost

• Passive monitoring vs. active probing
• Passive monitoring

• Does not provide accurate measurement, (but might be useful?)

• Active probing
• Accurate but might take multiple seconds

Some hints…

• Explore better paths by spawning extra VMs
• Tradeoff: cost

• Passive monitoring vs. active probing
• Passive monitoring

• Does not provide accurate measurement, (but might be useful?)

• Active probing
• Accurate but might take multiple seconds

• Exploit the DC network topology

Lessons from DP1

• Detailed performance analysis
• Provide real numbers

• Get your hands dirty and do some real measurements

• Detailed explanation on the use cases

• Guideline
• Make reasonable assumptions

• Try your best to justify your design

• Persuade your instructor to implement your design

