
MapReduce

Programming model

● Map
○ <doc-name, doc-content> => list<word, count>

● Reduce
○ <word, list<count>> => list<count>

● Partition (optional)
○ default: hash(key) mod R

Workflow

● client
● master
● input files (GFS)
● mappers
● intermediate files (local)
● reducers
● output (GFS)

Failure

● master failure: abort
● mapper failure: re-execute

○ completed: output stored locally
● reducer failure:

○ re-execute (in progress)
○ do nothing (completed, stored in GFS)

Optimizations

● combiner
○ local reducer

● backup task
○ stragglers (slow machines)

● scheduling locality
○ choose mappers close to input

Example questions: T or F

● Mappers
● Reducers
● Failure
● Optimization

Mappers 1/6

MapReduce executes different map tasks in
parallel.

Mappers 1/6

MapReduce executes different map tasks in
parallel.

T.

Mappers 2/6

To achieve locality, map workers always
execute on the same machine as the input data
that they consume.

Mappers 2/6

To achieve locality, map workers always
execute on the same machine as the input data
that they consume.

F. The master will try that though.

Mappers 3/6

MapReduce always schedules two instances of
every task (corresponding to the GFS replicas
of the input data) to guard against worker
failure and stragglers.

Mappers 3/6

MapReduce always schedules two instances of
every task (corresponding to the GFS replicas
of the input data) to guard against worker
failure and stragglers.

F.

Mappers 4/6

MapReduce guarantees that each map task is
executed only once to preserve functional
behavior.

Mappers 4/6

MapReduce guarantees that each map task is
executed only once to preserve functional
behavior.

F.

Mappers 5/6

Each map task is automatically distributed so
its output is read only by a single reduce task.

Mappers 5/6

Each map task is automatically distributed so
its output is read only by a single reduce task.

F. The output of a mapper is read by all.

Mappers 6/6

Intermediate data passed between the map
workers and reduce workers is stored in the
GFS.

Mappers 6/6

Intermediate data passed between the map
workers and reduce workers is stored in the
GFS.

F. Local disk on mappers.

Reducers 1/4

MapReduce may execute the same reduce
computation at the same time on different
machines and use the first results that are
returned.

Reducers 1/4

MapReduce may execute the same reduce
computation at the same time on different
machines and use the first results that are
returned.

T. For stragglers.

Reducers 2/4

File renaming is used to ensure that only a
single execution of a reduce task is
represented in the final output.

Reducers 2/4

File renaming is used to ensure that only a
single execution of a reduce task is
represented in the final output.

T. Write to a temporary file and do renaming.

Reducers 3/4

MapReduce places computations on machines
that have the data that the computation will
access locally available.

Reducers 3/4

MapReduce places computations on machines
that have the data that the computation will
access locally available.

F. Each reduce needs data from all map
processes.

Reducers 4/4

MapReduce writes the output of each reduce
computation to disks on different machines.

Reducers 4/4

MapReduce writes the output of each reduce
computation to disks on different machines.

T. The output is written to GFS, which writes to
multiple machines.

Failure 1/3

No single machine failure will prevent a
MapReduce computation from successfully
completing.

Failure 1/3

No single machine failure will prevent a
MapReduce computation from successfully
completing.

F. The master "wugui".

Failure 2/3

A programmer writes a map operator that has a
bug that causes it to fail non-deterministically.
During execution, several map tasks fail. This
MapReduce job will still execute to completion.

Failure 2/3

A programmer writes a map operator that has a
bug that causes it to fail non-deterministically.
During execution, several map tasks fail. This
MapReduce job will still execute to completion.

T.

Failure 3/3

The master incorrectly concludes that a reduce
task has failed, even though it is still running (e.
g., temporary network failure). The master
will start another reduce task, and both tasks
could complete execution of the same set of
reduce operations.

Failure 3/3

The master incorrectly concludes that a reduce
task has failed, even though it is still running (e.
g., temporary network failure). The master
will start another reduce task, and both tasks
could complete execution of the same set of
reduce operations.

T. GFS ensures only one write succeeds.

Performance 1/3

If there are M map tasks, using more than M
workers in the map phase may still improve
performance beyond that achieved with M
workers.

Performance 1/3

If there are M map tasks, using more than M
workers in the map phase may still improve
performance beyond that achieved with M
workers.

T. Stragglers/failed nodes.

Performance 2/3

If the performance of the system is not limited
by disk/network throughput, then doubling the
number of nodes in the system will probably
improve performance if the number of map and
reduce tasks is greater than the number of
nodes.

Performance 2/3

If the performance of the system is not limited
by disk/network throughput, then doubling the
number of nodes in the system will probably
improve performance if the number of map and
reduce tasks is greater than the number of
nodes.

T. Some tasks are waiting to be processed.

Performance 3/3

If some tasks on some workers take much
longer than others to complete, and these
stragglers are the bottleneck in the system,
then allocating additional nodes to these
straggler tasks will definitely improve
performance.

Performance 3/3

If some tasks on some workers take much
longer than others to complete, and these
stragglers are the bottleneck in the system,
then allocating additional nodes to these
straggler tasks will definitely improve
performance.

F. Complex computation, not because they are
running on slow machines.

Questions?

Good luck!

