
Pig
6.033 Quiz 1 Review

Qian Long

Pig Latin
● high level language on top of MapReduce
● combines SQL-like syntax with procedural programming
● logical plan
● compilation to MapReduce jobs

Nested Data Model
● atom - single atomic value

○ ‘alice’, 3
● tuple - sequence of fields of any type

○ (‘alice’, ‘lakers’), (‘field1’, { (‘blah1’), (‘blah2’)}, ‘field3’)
● bag - collection of tuples, allows duplicates

○ { (‘alice’, ‘lakers’), (‘alice’, (‘ipod’, ‘apple’)) }
● map - key/value pairs

○ key must be atom, value can be any type (can be different)
○ [‘key1’ -> { (‘field1’, ‘field2’)}, ‘key2’ -> 20]

Common Operations
● LOAD

○ read data
● FOREACH … GENERATE
● FILTER
● (CO) GROUP

○ group by matching field
● FLATTEN
● JOIN

○ (CO)GROUP followed by FLATTEN
● STORE

○ write computed output

More Operations
● UNION
● CROSS
● ORDER
● DISTINCT

FOREACH...GENERATE, FLATTEN

(CO)GROUP vs JOIN

Building Logical Plan
● Pig Interpreter

○ parses command, verifies inputs
○ constructs logical plan

● lazy execution
○ processing only happens on STORE command
○ allows re-ordering for optimization
○ in-memory pipelining

Compile to MapReduce Jobs
● converts each (CO)GROUP/JOIN into a map/reduce job

○ map/reduce boundary
○ map job assigns intermediate keys based on what you are grouping by
○ reduce job does the actual grouping based on the intermediate keys

● have 2 options for commands between subsequent (CO)GROUPs
○ (a) computed locally in reduce task of first (CO)GROUP
○ (b) computed in map task of second (CO)GROUP
○ Pig does (a) to reduce intermediate data between map/reduce jobs

Compilation Example

Sample Question
Suppose you have three Pig tables, papers, authors, and paperauths, defined as follows:

papers = load ’papers.dat’ using PigStorage(’\t’) as (pid:int, pname:chararray);
authors = load ’authors.dat’ using PigStorage(’\t’) as (aid:int, aname:chararray);
paperauths = load ’paperauths.dat’ using PigStorage(’\t’) as (pa_pid:int, pa_aid:int);

Now, consider the following Pig program (note that this program doesn’t actually use the author’s table).

x = group paperauths by pa_pid;
x2 = foreach x generate flatten(paperauths), COUNT(paperauths) as count;
x3 = cogroup x2 by pa_pid, papers by pid;
x4 = foreach x3 generate flatten(papers), flatten(x2);
x5 = foreach x4 generate pname, count;

dump x5;

Here dump is a Pig command to print a result set

Sample Question
Q1: How many map/reduce jobs would this
translate into?

Sample Question

A1: 2

Sample Question
Q2: Describe briefly what the first map job
does.

Sample Question

A2: It reads the paperauths file, iterating
through the records and emitting tuples of the
form pid, (paper-auths tuple) (i.e., where the
key is pid and the value is the tuple.

Sample Question

Q3: Describe briefly what the first reduce job
does.

Sample Question
A3: For each tuple t in each
{ paperauth tuple } set S passed into the reduce job, emit t.pa_pid, COUNT(S).
We also accepted answers that did not do the COUNT in the reduce
(presumably deferring it to the next map job.)

Sample Questions

http://db.csail.mit.edu/6.830/assignments/q2-
2012.pdf
http://db.csail.mit.edu/6.830/assignments/q2-
solns-2012.pdf

http://db.csail.mit.edu/6.830/assignments/q2-2012.pdf
http://db.csail.mit.edu/6.830/assignments/q2-2012.pdf
http://db.csail.mit.edu/6.830/assignments/q2-2012.pdf
http://db.csail.mit.edu/6.830/assignments/q2-solns-2012.pdf
http://db.csail.mit.edu/6.830/assignments/q2-solns-2012.pdf
http://db.csail.mit.edu/6.830/assignments/q2-solns-2012.pdf

