Pig
6.033 Quiz 1 Review
Qian Long

Pig Latin

high level language on top of MapReduce

combines SQL-like syntax with procedural programming
logical plan

compilation to MapReduce jobs

Nested Data Model

e atom - single atomic value
o ‘alice’, 3
e tuple - sequence of fields of any type
o (‘alice’, ‘lakers’), (‘field1’, { (‘blah1’), (‘blah2’)}, ‘field3’)
e bag - collection of tuples, allows duplicates
o {(‘alice’, ‘lakers’), (‘alice’, (‘ipod’, ‘apple’)) }
e map - key/value pairs
o key must be atom, value can be any type (can be different)
o [‘key1 ->{(field1’, ‘field2’)}, ‘key2’ -> 20]

Common Operations

e LOAD

o read data
e FOREACH ... GENERATE
e FILTER
e (CO)GROUP

o group by matching field
e FLATTEN
e JOIN

o (CO)GROUP followed by FLATTEN
e STORE

o write computed output

More Operations

UNION
CROSS
ORDER
DISTINCT

FOREACH...GENERATE, FLATTEN

queries:
(userid, queryString, timestamp)

POREACH queries GENERATE (°““‘ (é?::::srm:;)}) (alice, lakers rumors)

(alice, lakers, 1) expandQuery(queryString) with flattening “cal{ce, lakers news)

(bob, iPod, 3) . . > =" " (bob, iPod nano)
(without Ratiening) (bob, \{(1(;}0dms$:a)e) }) (bob, iPod shuffle)

Figure 1: Example of flattening in FOREACH.

(CO)GROUP vs JOIN

grouped_data: (group, results, revenue)
results:

(queryString, url, rank) (mm-s. (:dcm. nba.com, 1) (lakers, top, 50))
(lakers, nba.com, 1) COGROUP (lokers, espn.com, 2) [+ | (lokers, side, 20)
(lokers, espn.com, 2)

(kings, nhl.com, 1) 4 > (ki)

: ngs, nhl.com, 1) (kings, top, 30)
(kings, nba.com, 2) (kings, {(kings. nba.com, 2) (' < (kings, side, 10))

revenue: distributeRevenue
(queryString, adSiot, amount) l
” » m' . 1! » ”

(lokers, top, 50) — ((lldoe:ss rbo:: 1, sm. u)) (nba.com, 60@)

(lokers, side, 20) \ 4 p» (lakers, espn.com, 2, top, 50) (espn.com, 10)

(kings, top, 39) . ; (nhl.com, 35)
(kings, side, 18) O™ (lckers, espn.com, Z, side, 20) (nba.com, S)

Figure 2: COGROUP versus JOIN.

Building Logical Plan

e Pig Interpreter
o parses command, verifies inputs
o constructs logical plan
e |azy execution
o processing only happens on STORE command
o allows re-ordering for optimization
o in-memory pipelining

Compile to MapReduce Jobs

e converts each (CO)GROUP/JOIN into a map/reduce job
o map/reduce boundary
o map job assigns intermediate keys based on what you are grouping by
o reduce job does the actual grouping based on the intermediate keys
e have 2 options for commands between subsequent (CO)GROUPs
o (a) computed locally in reduce task of first (CO)GROUP
o (b) computed in map task of second (CO)GROUP
o Pig does (a) to reduce intermediate data between map/reduce jobs

Compilation Example

map, reduce, map, reduce map, ., reduce,
load » filter » growp » cogroup » Cogroup P
G R & Cls
load

Figure 3: Map-reduce compilation of Pig Latin.

Sample Question

Suppose you have three Pig tables, papers, authors, and paperauths, defined as follows:

papers = load ’'papers.dat’ using PigStorage (’\t’) as (pid:int, pname:chararray);
authors = load ’'authors.dat’ using PigStorage (’\t’) as (aid:int, aname:chararray);
paperauths = load ’paperauths.dat’ using PigStorage(’\t’) as (pa pid:int, pa aid:int);

Now, consider the following Pig program (note that this program doesn’t actually use the author’s table).

X = group paperauths by pa pid;

x2 = foreach x generate flatten (paperauths), COUNT (paperauths) as count;
x3 = cogroup x2 by pa pid, papers by pid;

x4 = foreach x3 generate flatten (papers), £flatten (x2);

x5 = foreach x4 generate pname, count;

dump x5;

Here dump is a Pig command to print a result set

Sample Question

Q1: How many map/reduce jobs would this
translate into?

Sample Question

Al: 2

Sample Question

Q2: Describe briefly what the first map job
does.

Sample Question

A2: It reads the paperauths file, iterating
through the records and emitting tuples of the
form pid, (paper-auths tuple) (i.e., where the
key is pid and the value is the tuple.

Sample Question

Q3: Describe briefly what the first reduce job
does.

Sample Question

A3: For each tuple t in each
{ paperauth tuple } set S passed into the reduce job, emit t.pa_pid, COUNT(S).
We also accepted answers that did not do the COUNT in the reduce

(presumably deferring it to the next map job.)

Sample Questions

http://db.csail.mit.edu/6.830/assignments/q2-
2012.pdf

http://db.csail.mit.edu/6.830/assignments/q2-
solns-2012.pdf

http://db.csail.mit.edu/6.830/assignments/q2-2012.pdf
http://db.csail.mit.edu/6.830/assignments/q2-2012.pdf
http://db.csail.mit.edu/6.830/assignments/q2-2012.pdf
http://db.csail.mit.edu/6.830/assignments/q2-solns-2012.pdf
http://db.csail.mit.edu/6.830/assignments/q2-solns-2012.pdf
http://db.csail.mit.edu/6.830/assignments/q2-solns-2012.pdf

