
Congestion control

Overview

Goals: efficiency and fairness.

Try sending packets.
If packet dropped, decrease sending rate.
If not, increase sending rate.

Control rate using congestion window.
cwnd: number of un-acknowledged packets allowed

AIMD

Additive increase, multiplicative
decrease

No loss cwnd = cwnd + 1
Loss cwnd = cwnd / 2

Additional features

Slow-start
start with 1 packet and exponentially increase (not really “slow”)

Fast retransmit
retransmit packet after 3 dup acks

Fast recovery
cut congestion window in half after fast retransmit
(rather than returning to slow start)

DCTCP

Traffic in data centers

Delay-sensitive short flows
Contribute to incast: synchronized short flows collide.

Throughput-sensitive long flows
Contribute to queue buildup: short flows see high latency.

Applications will time out before operations
complete!

ECN
Packet marked if router queue length > threshold.

marked

Sender sees marks in ACKs and adjusts cwnd.

DCTCP algorithm

a = current estimate of fraction of marked packets
g = “estimation gain” - tuned parameter (section 3.4)
F = fraction of received ACKs that were marked

In each RTT:
a = (1 - g) * a + g * F
cwnd = (1 - a/2) * cwnd

Bufferbloat

Overview

Large buffers to prevent packet losses...
but TCP uses packet losses to detect congestion

Results?
senders do not reduce sending
potential for long queues to build up
potential for long delays

Arguments

Gettys: large data transfers appear to
result in high ping latency

Allman: bufferbloat can happen, but
modest observed impact

