
Isolation

6.033 Spring 2010
Lecture 18

Sam Madden
Key concepts:
Serial equivalence
Two-phase locking
Deadlock detection	

slides online at http://web.mit.edu/6.033/www/assignments/lec18.[ppt|pdf]	

Recover with cell-storage, log, cache,
optimized cell-storage updates

recover(log):
doneset = { }
for each record r in log[len-1] ... log[0]: //UNDO

if r.type == commit
doneset = doneset U r.TID

if r.type == update and r.TID not in doneset:
write(cell-storage, r.var, r.before)

for each record r in log[0]...log[len-1]: //REDO
if r.type == update and r.TID in doneset:
 if (cell-storage does not reflect r)

write(cell-storage, r.var, r.after)

Conflicting Operations	

Given two transactions T1 and T2, and
two operations o1 in T1, o2 in T2

o1 conflicts with o2 if either is a write
and both are to the same object

E.g. T1 RA, T2 WA or T1 WB, T2 WB

Testing for Serial Equivalence
(Conflict Serializability)	

A schedule is serial equivalent if
-  for all pairs of transactions T1 and T2,
-  all conflicting pairs of ops o1 in T1 and

o2 in T2 are ordered the same way
E.g., o1 always before o2 or
 o2 always before o1

T1 precedes T2	

T1 precedes T2	

T2 precedes T1	

Not serial equivalent!	

T1: RA WA
T2: RA WA

o1	

o2	

Locking Protocol	

Before reading/writing an object, get
lock on it

(If lock isn't available, block)	

When to release locks?	

Locking Protocol w/ Release	

Before reading/writing an object, system
acquires lock on it

(If lock isn't available, block)	

Release locks after transaction commit	

Two Phase Locking
(Allows locks to be released before

end of transaction)	

Phase 1 – system acquires lock before
reading or writing an object, up to lock
point

Phase 2 – releases locks on objects, after
done with them and after lock point
(Never acquire locks in phase 2)	

Two-phase locking with shared and
exclusive locks	

Phase 1:
Before reading an object, system acquires an S lock on it

 Blocks if any other xaction has X lock on object

Before writing an object, system acquires an X lock on it
 Blocks if any other xaction has X or S lock on object

Phase 2: Release locks on objects, after done with them
and after lock point	

Transaction Schedule  Log	

T1 T2
lock A
RA

 lock A (block)
WA
lock B <--- lock point
release A

 RA
 WA
 lock B (block)

RB
WB
release B

 RB
 WB	

BEGIN T1
BEGIN T2

UPDATE T1,A

UPDATE T2, A

UPDATE T1, B

UPDATE T2, B
COMMIT T1; COMMIT T2

Schedule	
 Log	

Avoiding cascading aborts	

Phase 1:
Before reading an object, system acquires an S lock on it

 Blocks if any other xaction has X lock on object

Before writing an object, system acquires an X lock on it
 Blocks if any other xaction has X or S lock on object

Phase 2: Release S locks on objects anytime after done
with them and after lock point

Only release X locks after end of transaction	

