Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.033 Computer Systems Engineering: Spring 2006

Quizl

% ! ! ! ! ! ! ! ! ! ! !

40 45 50 55 60 65 70 75 80 85 90 95 100

6.033 Spring 2006, Quiz 1 Page 2 of 13

| Reading Questions

1. [6 points]: Which of the following statements is true for UNIX as described in reading #5
(Ritchie and Thompson. “The UNIX time-sharing system”, Bell System Teethidournal, 57, 6,
part 2, 1978)?

(Circle True or Falsefor each choice.)

A. True / False The i-number of a file is a disk address.
FALSE. The i-number of a file is simply an offset into the i-list.

B. True / False Directory entries contain the names of files and their corresponding i-msmbe
TRUE.

C. True / False Links may be made to directories.
FALSE. The Unix paper explicitly says links cannot be made to directories.

D. True / False A pipe between two processes cannot be established after both haed.star
TRUE.

E. True / False A parent process shares open files at the timeastk with its children.
TRUE.

F. True / False A parent process knows the “processid” of its child process vHaark completes
but not vice versa.
TRUE.

2. [8 poaints]: Which of the following statements is true of the X Window System as described in
Reading #6 (Scheifler and Gettys. “The X window System”, ACM Tran<smphics, Vol 5, 2, April
1986)7?

(Circle True or Falsefor each choice.)

A. True / False The X server is an example of a trusted intermediary.

TRUE. The X server acts as an intermediary between different client progadirskaring the
display. Each clients trusts that the server will display its content property @revent other
clients from interfering with its windows.

B. True / False The X server notifies the client when regions of the client’s window become
visible, but not when regions of the client’s window become obscured.

TRUE. See Section 7 of the X Windows paper on Exposures.

C. True / False The X server runs in user mode.
TRUE.

D. True / False The X client sends RPCs to the X server to check if a mouse click has edcurr

FaLSE. The X server sends event to the clients via a stream; clients are noteedoirequest
them from the server.

Name:

6.033 Spring 2006, Quiz 1 Page 3 of 13

3. [8 paints]: Which of the following statements about the Lockset algorithm as used in e Ra
Track paper (Reading #7 “RaceTrack: Efficient Detection of DataeRagnditions via Adaptive
Tracking” by Yu, Rodeheffer, and Chen, Proc. of the 20th ACM Sysinpm on Operating Systems
Principles, 2005) is true?

(Circle True or Falsefor each choice.)

A. True / False It can be used to detect deadlocks in multi-threaded programs.
FALSE. The Lockset algorithm cannot detect deadlocks.

B. True / False It can report false race conditions that are not actually present irothes ¢

TRUE. Racetrack flags any case where two concurrent threads both aacgsared variable
without consistently holding some lock as a race condition. There may laigitsl (such as
lock-free code) that contain no races but don't require this strict logkdiscipline to be fol-
lowed. The experimental results demonstrate clearly that a numbemefaw@ conditions are
detected by the algorithm.

C. True / False It can fail to detect race conditions that are actually present in the code.
TRUE. Racetrack only flags race conditions that it actually sees in a trace of saemution of
the program; different executions may reveal other races.

D. True / False It cannot detect race conditions involving three or more threads.

FALSE. Racetrack works just fine with more than two threads (as in the example tineRggin
the RaceTrack paper).

Name:

6.033 Spring 2006, Quiz 1 Page 4 of 13

4. [8 points]: Louis writes a multithreaded program, which produces an incorrect arsomee of
the time, but always completes. He suspects a race condition. Which ofiitheifg are strategies
that can reduce or eliminate race conditions in Louis’s program?

Name:

(Circle Trueor Falsefor each choice.)

. True / False Separate a multi-threaded program into multiple single-threaded prograchs (ea

with its own address space) and share data between them via an inteamprogmmunication
primitive like pipes.

TRUE. Although this approach may slow down the system, it will ensure thereoasces. (The
threads would no longer share memory, and a race condition can orgpdrawhen threads
actually share memory.)

. True / False Apply the one-writer rule.

TRUE. The one-writer rule is a good strategy for helping to avoid race conditions.

. True / False Ensure that for each shared variablet is protected by some lodk.

TRUE. Ensuring that a shared variable is always protected by a lock will guasattiere is no
race on that variable.

. True / False Ensure that all locks are acquired in the same order.

FALSE. Always acquiring locks in the same order will prevent deadlocks. Whée€ldeks are
arguably a form of race condition, there was no deadlock here sincéslsgorogram always
completes.

6.033 Spring 2006, Quiz 1 Page 5 of 13

Il Ben’sOS (BOS)

Ben is having a blast with design project 1. To get a better feeling for thkl@aws that his superfast file
system might experience, he sketches out a server:

upload
download

. > Server
unlink

start

open, read, write, ¢lose, unlink
receive_message} send_message, run

superfast file
ports run P BOSv1
system

The server supports the following requests:

e UPLOAD: upload a file to the server. Attempting to write an existing file results iereor.

e DOWNLOAD: download a file from the server. Attempting to read a file thatsdteexist results in
an error.

e UNLINK: remove a file. Attempting to unlink a file that doesn’t exist results ireanor.

e START: start a new program. This request is not required by DP1 éot8lded it to make it possible
to start programs on the server. This request may fail if there are woiglrresources to start the
program.

To support the server, Ben's operating system (BOS) supportsitbeiftg supervisor calls (also sometimes
called system calls) in addition to the file system calfEN WRITE, READ, CLOSE, andUNLINK :

e RECEIVE.MESSAGHport): A program callingReCEIVE MESSAGE Will block until a message des-
tined forport arrives on this machine.

e SEND_.MESSAGHMessage The proceduresEND_MESSAGE sends a message to paistport on
machinedestination(see message structure in figure 1).

e RUN(namg: Applications can start a new program USRIgN. RUN creates a new user-level address
space, loads the program specified in its argument into the address eates a thread to run the
program, and returns to the caller. The new program may call any of gesasor calls.

Ben’s names this first BOS implementation BOSv1.
Name:

6.033 Spring 2006, Quiz 1 Page 6 of 13

The server runs like any other application (i.e., it has been createdrigijgand is implemented as shown
in figure 1. (We suggest you skim the code and continue reading theftthe quiz. The implementation
of the server is straightforward and it doesn't include any quiz traps specific questions you may want
to go back to the code to firm up your understanding of what the spec#stign is asking.)

5. [5 points]: Looking at the underlined strings in figure 1, which of the following arengxas of
names?
(Circle True or Falsefor each choice.)

A. True / False “sourcé
TRUE.

B. True / False “1048576”
FALSE. This is a number. All of the others are nhames and would require a nastdutéen
algorithm to resolve to a value.

C. True / False “request
TRUE.

D. True / False “SERVERPORT
TRUE.

E. True / False “UNLINK”"
TRUE.

To handle failures, the RPC stub on the client resends a request if it’'tloexeive a reply within a certain
period of time. On receiving a reply for the request, the stub returns.

6. [8 points]: Assume a single client. Which of the following requests are idempotent (i.e., the
request can be repeated and will always produce the same resultasdfjtrest completed once)?
(Circle Trueor Falsefor each choice.)

A. True / False UPLOAD

FALSE. After the first execution of UPLOAD, subsequent calls will cause amr eggponse,
because UPLOAD requires that the file not yet exist.

B. True / False DOWNLOAD
TRUE.

C. True / False UNLINK
FALSE. Calls of UNLINK (after the first call) will cause an error because the file ndllonger
exist.

D. True / False START

FaLsE. Each call of START causes a new program to start running with its owadhtdaving
multiple copies of a program running is not the same as having just onge €opexample, the
second might be unable to make progress because the first one hap tma many resources.

Name:

6.033 Spring 2006, Quiz 1 Page 7 of 13

structure message {

address destination; [/ destination address

int dest_port; [/ destination port

address source; [/ source address

int src_port; [/ source port

int opcode; [l operation code of request

int result; [/ result of request

char name[MAXNAMELEN]; // name of file, no more than MAXNAMELEN charaters
int len; //length of data

char data[1048576]; // data of message, up to 1 Megabyte of characters

}

procedure SERVER)
structure message request, reply;
int fd;
while TRUE do
request < RECEIVE.MESSAGE SERVERPORT); /I Wait for a message sent to port SERVERRT
if request.opcode = UPLOAD then // upload request?
fd — OPEN(request.name, O_.EXCL|O_.CREATEHO_WRONLY); // Writing an existing file is an error
if fd <0 then reply.result — fd; /Il error opening the file?
else {
reply.result «— WRITE(fd, request.data, request.len);
CLOSKE(fd);
}
elseif request.opcode = DOWNLOAD then // download request?
fd «— oPEN(name, READ_ONLY); // Attempt to open the file for reading
if fd <0 then reply.result — fd; /I error opening the file?
else {
reply.len «— request.len;
reply.result «— READ(fd, reply.data, reply.len);
CLOSE(fd);
}
eseif request.opcode = UNLINK then // unlink request?
reply.result < UNLINK (request.name);
eseif request.opcode = START then /[start a program?
reply.result «— RUN(request.name);
else{ //reply with an error
reply.result — ERROROPCODE
}
reply.destination < request.source;
reply.dest_port < request.src_port;
reply.source «— MYMACHINE ;
reply.src_port «+— SERVERPORT;
reply.opcode «— request.opcode;
SEND_MESSAGHTeply);

Figure 1: Ben’s server. (Some strings are underlined for question 5.)
Name:

6.033 Spring 2006, Quiz 1 Page 8 of 13

7. [9 points]: A single client uses the server. The client sends an RPC to the serveloadup
a file and then sends another RPC to unlink the file. The client repeats thisrssgmany times.
Occasionally the client observes that the reply from the server for tliekURPC contains an error,
indicating that the file didn’t exist. Which of the following faults could, by itseused the observed
behavior? (Remember that the client retries each request until it receneply.)

(Circle Trueor Falsefor each choice.)

A. True / False The server failed after the server processed an earlier unlink reloutelsefore
sending a reply, and then restarted.
TRUE. If the server fails and then restarts, its reply to the second UNLINK recreadd be
an error reply (assuming it did not lose the effect of the previous ¢ixecaf UNLINK in the
failure).

B. True / False The network between the client and the server lost a reply.
TRUE. The second reply of the server will reflect the second execution ofNK\lwhich will
produce an error reply since at that point the file no longer exists.

C. True / False The network between the client and the server lost a request.
FALSE. Since the first request message was lost, the server has not actesat oadghest, and
therefore the file still exists when the second request message arrives.

D. True / False The server is so slow that the client, for a given unlink RPC, resende tjuest
and then receives the reply for the first request for that RPC.
FALSE. The reply to the first request will indicate a successful completion of thellNK
request, even though it arrives after the second request has beebseause that reply reflects
the effect of the first execution of the UNLINK request.

Ben measures the performance of the server on BOSv1 when it runspragnams concurrently, and is
disappointed with the measured performance. Ben modifiesto make the system faster. The new version
of RUN loads the program in the kernel address space and creates a threadte program in the kernel
address space. Thus, all threads run in kernel mode in a single adgase. The threads are scheduled
preemptively. Ben names this version BOSv2.

8. [8 points]: What program errors can BOSv1 (where each program runs in itsusemnlevel
address space) isolate well and BOSv2 not?
(Circle Trueor Falsefor each choice.)

A. True / False Writes to arbitrary addresses
TRUE. In BOSV2 there is no protection of the address space from programseara therefore
arbitrary reads, writes, and jumps can occur; none of these is possild©Sv1. Even arbitrary
reads can be problematic because the read might access private infonmabe used to obtain
an address that a later instruction might jump or write to.

B. True / False Reads from arbitrary addresses
TRUE.

C. True / False Jumps to arbitrary addresses
TRUE.

D. True / False Infinite loops

Name: FALSE. Since both BOSv1 and BOSV2 use preemptive scheduling, program thiabresult in
infinite loops are handled identically in each of them.

6.033 Spring 2006, Quiz 1 Page 9 of 13

9. [8 points]: Which overheads can BOSv2 avoid (compared to BOSv1)?

(Circle Trueor Falsefor each choice.)

A. True / False The performance overhead of entering and leaving the kernel.

TRUE. In BOSv2 a switch from one thread to another can be done without entemch@gaving
kernel mode since all threads are already running in kernel mode.

B. True / False The performance overhead of switching the page-map address register

TRUE. In BOSV2 there is a single page map used by all threads.

C. True / False The memory overhead of allocating a stack per thread.

FALSE. Threads require their own stack in either BOSv1 or BOSv2.

D. True / False The performance overhead of loadingandspwhen switching threads.

FaLSE. Switching threads always requires loading the PC and SP.

10. [8 points]: Programs in BOSv1 assume they run in their own virtual address spaB®©3n2
the programs and the kernel share a single virtual address spaceloBamt want to recompile or
inspect (and perhaps rewrite) all BOSv1 programs. Which of the follpyioperties of a BOSv1
program would allow Ben to start the program in BOSv2 (ustogy) without having to recompile or
rewrite the program?

Name:

(Circle Trueor Falsefor each choice.)

A. True / False All addresses of the program are PC relative.

TRUE. If all addresses of the program are PC-relative, it won't matter whier¢he address
space the code and the data it uses reside.

. True / False Global data structures in the program are addressed using absoltgesedd

FALSE. If the program uses absolute addresses either for global data or foingaprocedures
(question 10D), these addresses would need to be fixed up (relotatecount for the actual
locations of the referred to items.

. True / False The program uses multiple threads.

FALSE. The use of multiple threads is irrelevant to the ease of getting a programntanru
BOSv2.

. True / False Procedures in the program are addressed using absolute addresses

FALSE.

6.033 Spring 2006, Quiz 1 Page 10 of 13

Ben justlearned about semaphores, a coordination primitive similar to evensc but different. Semaphores
support the following two operations:

e DOWN (semaphore sen): decrement ifsem> 0 and return; otherwise, wait until another thread
increasesemand then try to decrement again.

e UP (semaphore sen): incrementsem wake up all threads waiting aem and return.

For completeness, figure 2 lists the pseudocode, which works in the samasthe implementation of
eventscounts in the class notes (see section E.3 of chaptexc8)UIRE uses a spin lock and turns off
interrupts.RELEASEreleases the lock and enables interrupts.

For all questions you can assume that the thread manager implements thgupgec@ and DOWN cor-
rectly; that is, you can just skim the code—there are no quiz traps. ficpar, the thread manager correctly
guarantees thatP and DOWN are atomic with respect to concurrent invocations by threads and interrup
handlers.

shared lock threadtable_lock; I/ the global lock for the thread manager
procedure UP(semaphore sem)
ACQUIRE(threadtable_lock);
sem «— sem + 1;
WAKEUP(sem); [/ set the state of all threads that are waiting on sem to RUNNABLE
RELEASE(threadtable_lock);

procedure DOWN(semaphore sem)

ACQUIRE(threadtable_lock);

whilesem <1 do{ /A
SETWAITING(sem); /I B; set this thread’s state to WAITING and record that it is waiting on sen
RELEASE(threadtable_lock);
YIELD (CONTINUE); // calling thread releases the processor
ACQUIRE(threadtable_lock);

}

sem «— sem — 1;

RELEASE(threadtable_lock);

Figure 2. Implementation of semaphores'AKEUP, SETWAITING, andYIELD are procedures implemented by the thr
managerwAKEUP sets the state of all threads that are waiting on semajseont® RUNNABLE. SETWAITING sets the stat

ead

of the calling thread to WAITING and records the semaphoeeltnead is waiting on.

Name:

6.033 Spring 2006, Quiz 1 Page 11 of 13

UsingbowN anduP, Ben implements a bounded buffer for each port as follows:

structure port_info {

semaphore n « 0;

structure message buffefNMSG]; // an array of NMSG messages
long integer in « 0;

long integer out «— 0;

} portinfo§NPORT]; // an array of portinfo’s

procedure INTERRUPT(structure message m)

/[an interrupt announcing the arrival of message m

structure port_info d; I/ alocal reference to a porinfo structure

d — portinfogm.dest_port];

if d.in — d.out > NMSG then { //is there space in the buffer?
return; // No, return; i.e., throw message away.

}

d.buffefd.in mod NMSG] « m;

d.in «— d.in + 1;

uP(d.n);

procedure RECEIVE_.MESSAGHdest_port)
structure port_info d; [/ alocal reference to a porinfo structure
d — port.infogdest_port];
DOWN(d.n);
m «— d.buffer{d.out mod NMSG;
d.out — d.out + 1;
return m;

The BOS implementation maintains an arrayoft_infos. Eachport.info contains a bounded buffer. When

a message arrives from the network, it generates an interrupt, anettierk interrupt handlengTERRUPT)

puts the message in the bounded buffer of the port specified in the medétigere is no space in that
bounded buffer, the interrupt handler throws the message away. adtlieeg., Ben’s server) consumes a
message by callingeCEIVE.MESSAGE which removes a message from the bounded buffer of the port it is
receiving from.

To coordinate the interrupt handler and a thread caliegeIVE_ MESSAGE, the BOS implementation uses
a semaphore. For each port, BOS keeps a semaphthigt counts the number of messages in the port’s
bounded buffer. I reaches 0, the thread callimpwN in RECEIVE_.MESSAGEWill enter the WAITING
state. WhenNTERRUPTadds a message to the buffer, it callson n, which will wake up the thread (i.e.,
set the thread’s state to RUNNABLE).

Name:

6.033 Spring 2006, Quiz 1 Page 12 of 13

11. [16 points]: Assume that there are no concurrent invocationsioERRUPT, and that there are
no concurrent invocations &ECEIVE.MESSAGEON the same port. Which of the following statements
is true about the implementation of TERRUPTANdRECEIVE_ MESSAGE?

(Circle Trueor Falsefor each choice.)

A. True / False There are no race conditions between two threads that irRbkEIVE. MESSAGE
concurrently on different ports.
TRUE. Two threads that invokeECEIVE_ MESSAGEconcurrently on different ports will access
different elements of paihfos. They therefore access disjoint regions of the memory, and there
are no data races.

B. True / False The complete execution aff in INTERRUPTWiIll not be interleaved between the
statements labeled A and B OwN.
TRUE. DOWN holds threadtabléock between A and B. The first statement of UP acquires
threadtablelock. If one thread invokes UP when another thread is between A and BWD,
the thread that invoked UP will wait until after the thread in DOWN executesdBpamceeds on
to releases threadtahleck.

C. True / False BecauseDOWN and uP are atomic, the processor instructions necessary for
subtracting osemin bowN and adding tesemin upP won't be interleaved incorrectly.
TRUE. If the instructions for changing sem in UP and DOWN were interleaved at &labd
DOWN would not be atomic.

D. True / False Becausén andout may be shared between the interrupt handler runmingRr-
RUPT and a thread callingeCEIVE.MESSAGEON the same port, it is possible f{WTERRUPT
to throw away a message even though there is space in the bounded buffer
TRUE. Consider the following execution sequence:
1. INTERRUPTIs called enough times to fill ug.bu f fer completely.
2. RECEIVE_MESSAGEexecutes until just before the stateméntut < d.out + 1; The thread
runningRECEIVE_MESSAGEIS now preempted and does not run until later.
3. INTERRUPTIs called. At this pointNTERRUPTWiIll throw the message away, even though it
could safely stick the message in the buffer.
Also note thatd.int andd.out are both long integers. Changes to long integers are not atomic
— they may require multiple instructions to appropriately update the upper ard kalves of
the long value stored in the integer.
Consider the following sequence:
1. INTERRUPT and RECEIVE_MESSAGE are called (perfectly interleaved, witlNTERRUPT
called first in each pairj23?) — 1 times. At this point there are no messages in the buffer
andd.in = d.out =0x00000000f fffffff
2. INTERRUPTIs called and inserts a message into the buffér, =0x0000000100000000
3. RECEIVE_.MESSAGEIs called. It takes the message out of the buffer and proceeds on to the
statementl.out <« d.out+1. It executes the first half of the update ahdut =0x0000000000000000.
The thread runningRECEIVE. MESSAGEiS now preempted and does not run until later. Note
that the second half of the update will eventually complete the incremehbof and set it to
0x0000000100000000, but this will not occur until the thread runs later.
4. INTERRUPTIs called. It computes thatin — d.out > NMSG, and so discards the message
even though it could safely stick the message in the buffer.

Name:

6.033 Spring 2006, Quiz 1 Page 13 of 13

Alyssa claims that semaphores can also be used to make operations atomjro&ises the following
modification to aport_info structure antRECEIVE.MESSAGEto allow threads to concurrently invokee-
CEIVE_MESSAGEON the same port without race conditions (only the commented lines changed):

Name:

structure port_info {

semaphore n «— 0;

semaphore mutexr <—?7777; /[see question below
message buffe{NMSG;

long integer in < 0;

long integer out « 0;

} port.info§NPORT];

procedure RECEIVE_.MESSAGHdest_port)
structure port_info d,;
d — port.infogdest_port];
DOWN(d.mutex); [/ enter atomic section
DOWN(d.n);
m « d.buffeld.out mod NMSGJ;
d.out — d.out + 1;
UP(d.mutex); Il leave atomic section
return m;

12. [8 points]: To what value camnutexbe initialized to avoid race conditions and deadlocks when
multiple threads calRECEIVE_ MESSAGEON the same port?

A.

D.

(Circle Trueor Falsefor each choice.)

True / False O

FALSE. If mutex is initialized to 0, the call to DOWN(d.mutex) will always block and thgnara
will deadlock.

. True / False 1

TRUE. The correct initial value is 1. Only 1 thread at a time will proceed past thik ca
DOWN(d.mutex), and atomicity is preserved.

. True / False 2

FALSE. Two threads may proceed concurrently past the call DOWN(d.mutdwe .statements
of these two threads could interleave in such a way as to cause a racéiocontbr example,
both could return the same message.

True / False -1
FALSE. The call to DOWN(d.mutex) will always block and the program will deadlock.

End of Quiz |

