An Introduction to Computer Networks

Prof. Dina Katabi

Chapter Outline

Introduction (slides and 7.A)

Layered Architecture (slides and 7.B & 7.D)

Routing (slides and 7.D)

Reliable Transmission & Flow Control (slides and read 7.E)

Congestion Control (slides and read 7.F)

This Lecture

What is a network?

Sharing the infrastructure

Circuit switching Packet switching

Best Effort Service

Analogy: the mail system
Internet's Best Effort Service

Networks

Why they are interesting?

Overcome geographic limits

Access remote data

Separate clients and server

Goal: Universal Communication (any to any)

Connectivity

Link

DSL, T1, T3, ... Characterized by

Capacity or bit-rate (1.5 Mb/s, 100Mb/s, ...)

Propagation delay (10us, 10ms, 100ms, ..)

Transfer time on a link = #bit/bit-rate + propagation delay

Connectivity

A mesh requires N² links too costly

We Have to Share the Infrastructure

Intermediate nodes called switches or routers allow the hosts to share the infrastructure

This Lecture

What is a network?

Sharing the infrastructure

Circuit switching Packet switching

Best Effort Service

Analogy: the mail system
Internet's Best Effort Service

Two ways to share

Circuit switching (isochronous)

Packet switching (asynchronous)

Circuit Switching

It's the method used by the telephone network

A call has three phases:

- Establish circuit from end-to-end ("dialing"),
- 2. Communicate,
- 3. Close circuit ("tear down").

If circuit not available: "busy signal"

Circuit Switching: Multiplexing/Demultiplexing

One way for sharing a circuit is TDM:

Time divided into frames and frames divided into slots Relative slot position inside a frame determines which conversation the data belongs to

E.g., slot 0 belongs to the red conversation Need synchronization between sender and receiver

Circuit Switching

Assume link capacity is C bits/sec

Each communication requires R bits/sec

#slots = C/R

Maximum number of concurrent communications is C/R

What happens if we have more than C/R communications?

What happens if the a communication sends less/more than R bits/sec?

Design is unsuitable for computer networks where transfers have variable rate (bursty)

Internet Traffic Is Bursty

Daily traffic at an MIT-CSAIL router

Max In:12.2Mb/s Avg. In: 2.5Mb/s

Max Out: 12.8Mb/s Avg. Out: 3.4 Mb/s

Packet Switching

Used in the Internet
Data is sent in **Packets**(header contains control
info, e.g., source and
destination addresses)

Packet Switching: Multiplexing/Demultiplexing

Multiplex using a queue

Routers need memory/buffer

Demultiplex using information in packet header

Header has destination

Router has a routing table that contains information about which link to use to reach a destination

Queues introduce

Variable Delay

Delay = Queuing delay + propagation delay + transmission delay + processing delay

Losses

When packets arrive to a full queue/buffer they are dropped

Packet switching also show

Packets in a flow may AQIfO With same path (depends on routing as we will see later) packets may be reordered

This Lecture

What is a network?
Sharing the Infrastructure

Circuit switching Packet switching

Best Effort Service

Analogy: the mail system
Internet's Best Effort Service

The mail system

Characteristics of the mail system

Each envelope is individually routed
No time guarantee for delivery
No guarantee of delivery in sequence
No guarantee of delivery at all!

Things get lost

How can we acknowledge delivery?

Retransmission

How to determine when to retransmit? Timeout?

If message is re-sent too soon duplicates

The mail system

The Internet

Characteristics of the Internet

Each packet is individually routed No time guarantee for delivery No guarantee of delivery in sequence No guarantee of delivery at all!

Things get lost

Acknowledgements

Retransmission

How to determine when to retransmit? Timeout?

If packet is re-transmitted too soon duplicate

Best Effort

```
No Guarantees:
  Variable Delay (jitter)
  Variable rate
 Packet loss
 Duplicates
 Reordering
 (notes also state maximum packet
 length)
```

Differences Between Circuit & Packet Switching

Circuit-switching	Packet-Switching
Guaranteed capacity	No guarantees (best effort)
Capacity is wasted if data is bursty	More efficient
Before sending data establishes a path	Send data immediately
All data in a single flow follow one path	Different packets might follow different paths
No reordering; constant delay; no pkt drops	Packets may be reordered, delayed, or dropped

This Lecture

We learned how to share the network infrastructure between many connections/flows

We also learned about the implications of the sharing scheme (circuit or packet switching) on the service that the traffic receives