
C. All-or-nothing atomicity II: Pragmatics 9–49

Draft Version of April 12, 2006 3:00 pm

The simplest recovery procedure performs two passes through the log. On the first pass,
it scans the log backward from the last record, so the first evidence it will encounter of each
all-or-nothing action is the last record that the all-or-nothing action logged. A backward log
scan is sometimes called a LIFO (for last-in, first-out) log review. As the recovery procedure
scans backward, it collects in a set the identity and completion status of every all-or-nothing
action that logged an OUTCOME record before the crash. These actions, whether committed or
aborted, are known as winners.

When the backward scan is complete the set of winners is also complete, so the recovery
procedure begins a forward scan of the log. Since restarting after the crash reset the cell
storage, on this pass the recovery procedure performs, in the order found in the log, all of the
REDO actions of every winner whose OUTCOME record says that it COMMITTED, installing values
in cell storage. At the end of this scan, the recovery procedure has restored cell storage to an
all-or-nothing-action consistent state: its state is as though every all-or-nothing action that
committed before the crash had run to completion, while every all-or-nothing action that
aborted or that was still pending at crash time had never existed. The database system can
now open for regular business. Figure 9–21 illustrates this recovery procedure.

This recovery procedure emphasizes the point that a log can be an authoritative version
of the entire database, sufficient to completely reconstruct the reference copy in cell storage.
On the other hand, unless the database system also has a durability requirement, that
recovery procedure is actually overkill for our current purpose. The reason casts a spotlight
on the distinction between all-or-nothing atomicity and durability. All-or-nothing atomicity is
concerned with failures that occur while an atomic action is in progress. Durability is
concerned with failures that occur after the action has completed. Many systems also require
that the results of an atomic action survive after the action completes, but that is a durability,

1 procedure RECOVER ()
2 { // Recovery procedure for a volatile, in-memory database.
3 winners ← NULL;
4 starting at end of log repeat until beginning
5 {
6 log_record ← previous record of log
7 if (type of log_record = OUTCOME)
8 then winners ← winners + log_record; // Set addition.
9 }
10 starting at beginning of log repeat until end
11 {
12 log_record ← next record of log
13 if (type of log_record = CHANGE)
14 and (action_id of log_record is in winners)
15 and (status of log_record of winners[action_id] = COMMITTED) then
16 perform redo_action of log_record;
17 }
18 return;
19 }

Figure 9–21: An idempotent redo-only recovery procedure for an in-memory database.
Because RECOVER writes only to volatile storage, if a crash occurs while it is running it is
safe to run it again.

9–50 Atomicity: All-or-nothing and Isolation

Draft Version of April 12, 2006 3:00 pm

rather than an atomicity, requirement. As will be seen in chapter 10, some systems have
minimal durability requirements. For example, the all-or-nothing action may have been to
make a group of changes to soft state in volatile storage, all of which changes must be made
consistently. On the other hand, if that soft state is lost completely in the crash, it will
probably have its own reconstruction procedure. In such a situation there would be no need
to redo the installs of that atomic action. A useful exercise for the reader is to modify the
recovery procedure to recover only those atomic actions that really require all-or-nothing
atomicity; they would be the ones that logged a COMMITTED outcome but never got to the point
of recording an END record, so their final results never became available.

A critical design property of the recovery procedure is that, if there should be another
system crash during recovery, it must still be possible to recover. Moreover, it must be possible
for any number of crash-restart cycles to occur without compromising the correctness of the
ultimate result. The method is to design the recovery procedure to be idempotent. That is,
design it so that if it is interrupted and restarted from the beginning it will produce exactly
the same result as if it had run to completion to begin with. With the in-memory database
configuration, this goal is not hard to obtain: just make sure that the recovery procedure
modifies only volatile storage. Then, if a crash occurs during recovery, the loss of volatile
storage automatically restores the state of the system to the way it was when the recovery
started, and it is safe to run it again from the beginning. If the recovery procedure ever
finishes, the state of the cell storage copy of the database will be correct, no matter how many
interruptions and restarts intervened.

The ABORT procedure similarly needs to be idempotent, because if an all-or-nothing
action decides to abort and, while running ABORT, some timer expires, the system may decide
to terminate and call ABORT for that same all-or-nothing action. The version of abort in figure
9–19 will satisfy this requirement if the individual undo actions are themselves idempotent.

4. Other logging configurations: non-volatile cell storage

Placing cell storage in volatile memory is a sweeping simplification that works well for
small and medium-sized databases, but some databases are too large for that to be practical,
so the designer finds it necessary to move cell storage to some cheaper, non-volatile storage
medium such as magnetic disk, as in the second configuration of figure 9–20. But with a non-
volatile storage medium, installs survive system crashes, so the simple recovery procedure
used with the in-memory database would have two shortcomings:

1. If, at the time of the crash, there were some pending all-or-nothing actions
that had installed changes, those changes will survive the system crash. The
recovery procedure must reverse the effects of those changes, just as if those
actions had aborted.

2. The in-memory database recovery procedure reinstalls the entire database,
even though much of it is probably intact in non-volatile storage. If the database
is large enough that it requires non-volatile storage to contain it, the cost of
unnecessarily reinstalling it in its entirety at every recovery is likely to be
unacceptable.

C. All-or-nothing atomicity II: Pragmatics 9–51

Draft Version of April 12, 2006 3:00 pm

In addition, reads and writes to non-volatile cell storage are likely to be slow, so it is nearly
always the case that the designer installs a cache in volatile memory, along with a multilevel
memory manager, thus moving to the third configuration of figure 9–20. But that addition
introduces yet another shortcoming:

3. In a multilevel memory system, the order in which data is written from
volatile levels to non-volatile levels is generally under control of a multilevel
memory manager, which may, for example, be running a least-recently-used
algorithm. As a result, at the instant of the crash some things that were thought
to have been installed may not yet have migrated to the non-volatile memory.

To postpone consideration of this shortcoming, let us temporarily assume that the
multilevel memory manager implements a write-through cache. (Subsection C.6, below, will
return to the case where the cache is not write-through.) With a write-through cache, we can
be certain that everything that the application program has installed has been written to
non-volatile storage. This assumption drops the third shortcoming out of our list of concerns
and the situation is the same if we were using the second configuration of figure 9–20. But we
still have to do something about the first two shortcomings, and we also must make sure that
the modified recovery procedure is still idempotent.

To address the first shortcoming, that the database may contain installs from actions
that should be undone, we need to modify the recovery procedure of figure 9–21. As the
recovery procedure performs its initial backward scan, it should create a list of those all-or-
nothing actions that were still in progress at the time of the crash. This set of actions are
known as losers, and it can include both actions that committed and actions that did not.
Losers are easy to identify because the first log record that contains their identity that is
encountered in a backward scan will be something other than an END record. To collect the list
of losers, the pseudocode keeps track of which actions logged an END record in an auxiliary list
named completeds. Actions that are not in completed are the ones that go into the the list of
losers. In addition, as it scans backwards, whenever the recovery procedure encounters a
CHANGE record belonging to a loser, it performs the UNDO action listed in the record. In the
course of the LIFO log review, all of the installs performed by losers will thus be rolled back
and the state of the cell storage will be as if those all-or-nothing actions had never started.
Next, RECOVER performs the forward log scan of the log, performing the redo actions of those
losers that committed, as shown in figure 9–22. Finally, the recovery procedure logs an END

record for every all-or-nothing action in the list of losers. This END record transforms the loser
into a completed action, thus ensuring that future recoveries will ignore it and not perform
its undos again. For future recoveries to ignore aborted losers is not just a performance
enhancement, it is essential, to avoid incorrectly undoing updates to those same variables
made by future all-or-nothing actions.

As before, the recovery procedure must be idempotent, so that if a crash occurs during
recovery the system can just run the recovery procedure again. In addition to the technique
used earlier of placing the temporary variables of the recovery procedure in volatile storage,
each individual undo action must also be idempotent. For this reason, both redo and undo
actions are usually expressed as blind writes. A blind write is a simple overwriting of a data
value without reference to its previous value. Because blind writes are inherently
idempotent, no matter how many times one repeats it, the result is always the same. Thus, if

9–52 Atomicity: All-or-nothing and Isolation

Draft Version of April 12, 2006 3:00 pm

a crash occurs part way through the logging of abort records, immediately rerunning the
recovery procedure will still leave the database correct. Any losers that now have abort
records will be treated as completed on the rerun, but that is OK because the previous
attempt of the recovery procedure has already undone their installs.

As for the second shortcoming, that the recovery procedure unnecessarily redoes every
install, we can significantly simplify (and speed up) recovery by analyzing why we have to
redo any installs at all. The reason is that, although the WAL protocol requires logging of
changes to occur before install, there is no necessary ordering between commit and install.
Until a committed action logs its END record, there is no assurance that any particular install
of that action has actually happened yet. On the other hand, any committed action that has
logged an END record has completed its installs. The conclusion is that the recovery procedure
does not need to redo installs for any committed action that has logged its END record. A useful
exercise is to modify the procedure of figure 9–22 to take advantage of that observation.

But it would be even better if the recovery procedure never had to redo any installs. We
can arrange for that by placing another requirement on the application: it must perform all
of its installs before it logs its OUTCOME record. That requirement, together with the write-
through cache, ensures that the installs of every completed all-or-nothing action are safely in

1 procedure RECOVER ()
2 { // Recovery procedure for non-volatile cell memory
3 completeds ← NULL;
4 losers ← NULL;
5 starting at end of log repeat until beginning
6 {
7 log_record ← previous record of log
8 if (type of log_record = END)
9 then completeds ← completeds + log_record; // Set addition.
10 if (action_id of log_record is not in completeds) then
11 {
12 losers ← losers + log_record; // Add if not already in set.
13 if (type of log_record = CHANGE) then
14 perform undo_action of log_record;
15 }
16 }
17 starting at beginning of log repeat until end
18 {
19 log_record ← next record of log
20 if (type of log_record = CHANGE)
21 and (status of action_id of log_record = COMMITTED) then
22 perform redo_action of log_record;
23 }
24 for each log_record in losers do
25 log (action_id of log_record, END); // Show action completed.
26 return;
27 }

Figure 9–22: An idempotent undo/redo recovery procedure for a system that performs
installs to non-volatile cell memory. In this recovery procedure, losers are all-or-nothing
actions that were in progress at the time of the crash.

C. All-or-nothing atomicity II: Pragmatics 9–53

Draft Version of April 12, 2006 3:00 pm

non-volatile cell storage and there is thus never a need to perform any redo actions. (It also
means that there is no need to log an END record.) The result is that the recovery procedure
needs only to undo the installs of losers, and it can skip the entire forward scan, leading to
the simpler recovery procedure of figure 9–23. This scheme, because it requires only undos,
is sometimes called undo logging or roll-back recovery. A property of roll-back recovery is that
for completed actions, cell storage is just as authoritative as the log. As a result, one can
garbage collect the log, discarding the log records of completed actions, and can then place
the—now, much smaller—log in a faster storage medium for which the durability
requirement is only that it outlast pending actions.

There is an alternative, symmetric constraint used by some logging systems. Rather
than requiring that all installs be done before logging the OUTCOME record, one can instead
require that all installs be done after recording the OUTCOME record. With this constraint, the
set of CHANGE records in the log that belong to that all-or-nothing action become a description
of its intentions. If there is a crash before logging an OUTCOME record, we are assured that no
installs have happened, so the recovery never needs to perform any undos. On the other hand,
it may have to perform installs for all-or-nothing actions that committed. This scheme is
called redo logging or intentions-list recovery. Furthermore, because we are uncertain about
which installs actually have taken place, the recovery procedure must perform all logged
installs for all-or-nothing actions that did not log an END record. Any all-or-nothing action that
logged an END record must have completed all of its installs, so there is no need for the
recovery procedure to perform them. The recovery procedure thus reduces to doing installs
just for all-or-nothing actions that were interrupted between the logging of their OUTCOME and
END records. Recovery with redo logging can thus be quite swift, though it still requires both
a backward and forward scan of the entire log.

We can summarize the procedures for atomicity logging as follows:

1 procedure RECOVER ()
2 { // Recovery procedure for roll-back recovery.
3 completeds ← NULL;
4 losers ← NULL;
5 starting at end of log repeat until beginning // Perform undo scan.
6 {
7 log_record ← previous record of log
8 if (type of log_record = OUTCOME)
9 then completeds ← completeds + log_record; // Set addition.
10 if (action_id of log_record is not in completeds) then
11 {
12 losers ← losers + log_record; // Must be a new loser.
13 if (type of log_record = CHANGE) then
14 perform undo_action of log_record;
15 }
16 }
17 for each log_record in losers do
18 log (action_id of log_record, OUTCOME, ABORT); // Block future undos.
19 return;
20 }

Figure 9–23: An idempotent undo-only recovery procedure for a roll-back logging system.

9–54 Atomicity: All-or-nothing and Isolation

Draft Version of April 12, 2006 3:00 pm

• Log to journal storage before installing in cell storage (WAL protocol)

• If all-or-nothing actions perform all installs to non-volatile storage before logging
their OUTCOME record, then recovery needs only to undo the installs of incomplete
uncommitted actions. (roll-back/undo recovery)

• If all-or-nothing actions perform no installs to non-volatile storage before logging
their OUTCOME record, then recovery needs only to redo the installs of incomplete
committed actions. (intentions-list/redo recovery)

• If all-or-nothing actions are not disciplined about when they do installs to non-
volatile storage, then recovery needs to both redo the installs of incomplete
committed actions and undo the installs of incomplete uncommitted ones.

In addition to reading and updating memory, an all-or-nothing action may also need to
send messages, for example, to report its success to the outside world. The action of sending
a message is just like any other component action of the all-or-nothing action. To provide all-
or-nothing atomicity, message sending can be handled in a way analogous to memory update.
That is, log a CHANGE record with a redo action that sends the message. If a crash occurs after
the all-or-nothing action commits, the recovery procedure will perform this redo action along
with other redo actions that perform installs. In principle, one could also log an undo_action
that sends a compensating message (“Please ignore my previous communication!”). However,
an all-or-nothing action will usually be careful not to actually send any messages until after
the action commits, so intentions-list recovery applies. For this reason, a designer would not
normally specify an undo action for a message or for any other action that has outside-world
visibility such as printing a receipt, opening a cash drawer, drilling a hole, or firing a missile.

5. Checkpoints

Constraining the order of installs to be all before or all after the logging of the OUTCOME

record is not the only thing we could do to speed up recovery. Another technique that can
shorten the log scan is to occasionally write some additional information, known as a
checkpoint, to non-volatile storage. Although the principle is always the same, the exact
information that is placed in a checkpoint varies from one system to another. A checkpoint
can include information written either to cell storage or to the log (where it is known as a
checkpoint record) or both.

Suppose, for example, that the logging system maintains in volatile memory a list of
identifiers of incomplete all-or-nothing actions and their pending/committed/aborted/ended
status, keeping it up to date by observing the calls that log BEGIN, OUTCOME, and END records.
The logging system then occasionally logs this list as a CHECKPOINT record. When a crash
occurs sometime later, the recovery procedure begins a LIFO log scan as usual, collecting the
sets of completed actions and losers. When it comes to a CHECKPOINT record it can immediately
fill out the set of losers by adding those all-or-nothing actions that were listed in the
checkpoint that did not later log an END record. This list may include some all-or-nothing
actions listed in the CHECKPOINT record as COMMITTED, but that did not log an END record by the
time of the crash. Their installs still need to be performed, so they need to be added to the set
of losers. The LIFO scan continues, but only until it has found the BEGIN record of every loser.

C. All-or-nothing atomicity II: Pragmatics 9–55

Draft Version of April 12, 2006 3:00 pm

With the addition of CHECKPOINT records, the recovery procedure becomes more complex,
but is potentially shorter in time and effort:

1. Do a LIFO scan of the log back to the last CHECKPOINT record, collecting
identifiers of losers and undoing all actions they logged.

2. Complete the lists of losers from information in the checkpoint.

3. Continue the LIFO scan, undoing the actions of losers, until finding every
BEGIN record belonging to every loser.

4. Perform a forward scan from that point to the end of the log, performing any
committed actions belonging to all-or-nothing actions in the list of losers that
logged an OUTCOME record with status COMMITTED.

In systems in which long-running all-or-nothing actions are uncommon, step 3 will typically
be quite brief or even empty, greatly shortening recovery. A good exercise is to modify the
recovery program of figure 9–22 to accommodate checkpoints.

Checkpoints are also used with in-memory databases, to provide durability without the
need to reprocess the entire log after every system crash. A useful checkpoint procedure for
an in-memory database is to make a snapshot of the complete database, writing it to one of
two alternating (for all-or-nothing atomicity) dedicated non-volatile storage regions, and then
logging a CHECKPOINT record that contains the address of the latest snapshot. Recovery then
involves scanning the log back to the most recent CHECKPOINT record, collecting a list of
committed all-or-nothing actions, restoring the snapshot described there, and then
performing redo actions of those committed actions from the CHECKPOINT record to the end of
the log. The main challenge in this scenario is isolating the writing of the snapshot from any
concurrent update activity. That can be done either by preventing all updates for the duration
of the snapshot or by applying more complex isolation techniques such as those described in
later sections of this chapter.

6. What if the cache is not write-through? (advanced topic)

Between the log and the write-through cache, the logging configurations just described
require, for every data update, two synchronous writes to non-volatile storage, with
attendant delays waiting for the writes to complete. Since the original reason for introducing
a log was to increase performance, these two synchronous write delays usually become the
system performance bottleneck. Designers who are interested in maximizing performance
would prefer to use a cache that is not write-through, so that writes can be deferred until a
convenient time when they can be done in batches. Unfortunately, the application then loses
control of the order in which things are actually written to non-volatile storage. Loss of
control of order has a significant impact on our all-or-nothing atomicity algorithms, since they
require, for correctness, constraints on the order of writes and certainty about which writes
have been done.

The first concern is for the log itself, because the write-ahead log protocol requires that
appending a CHANGE record to the log precede the corresponding install in cell storage. One
simple way to enforce the WAL protocol is to make just log writes write-through, but allow

9–56 Atomicity: All-or-nothing and Isolation

Draft Version of April 12, 2006 3:00 pm

cell storage writes to occur whenever the cache manager finds it convenient. However, this
relaxation means that if the system crashes there is no assurance that any particular install
has actually migrated to non-volatile storage. The recovery procedure, assuming the worst,
cannot take advantage of checkpoints and must again perform installs starting from the
beginning of the log. To avoid that possibility, the usual design response is to flush the cache
as part of logging each checkpoint record. Unfortunately, flushing the cache and logging the
checkpoint must be done as a single atomic action that is isolated from concurrent updates,
which creates another design challenge. This challenge is surmountable, but the complexity
is increasing.

Some systems pursue performance even farther. A popular technique is to write the log
to a volatile buffer, and force that entire buffer to non-volatile storage only when an all-or-
nothing action commits. This strategy allows batching several CHANGE records with the next
OUTCOME record in a single synchronous write. Although this step would appear to violate the
write-ahead log protocol, that protocol can be restored by making the cache used for cell
storage a bit more elaborate; its management algorithm must avoid writing back any install
for which the corresponding log record is still in the volatile buffer. The trick is to number each
log record in sequence, and tag each record in the cell storage cache with the sequence
number of its log record. Whenever the system forces the log, it tells the cache manager the
sequence number of the last log record that it wrote, and the cache manager is careful never
to write back any cache record that is tagged with a higher log sequence number.

We have in this section seen some good examples of the law of diminishing returns at
work: schemes that improve performance sometimes require significantly increased
complexity. Before undertaking any such scheme, it is essential to evaluate carefully how
much extra performance one stands to gain.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

