
1

• 9-10:30AM on Thursday, May 19, 2005
• Johnson Ice Rink
• All material from Lecture 16 (April 4)

through Recitation 26 (May 12)
• Bring your notes!
• Print out the Unison paper and bring it.

Atomicity Concepts

Chapters 9 and 10
LFS, System R, Chocolate,

Unison, Durability

LFS: Motivation

RAM is cheap, so:
� The buffer cache will be large
� Reads will be “absorbed” by the
buffer cache

� Let’s design a filesystem that
makes writes really fast

LFS: On-Disk Layout

SS1 23 M1 SS2 47 23 M2

mkdir(“/etc”, 0);
fd = open(“/etc/group”, O_RDWR | O_CREAT);
write(fd, buf, 5000);

Segment Summary

Inode

Data

Inode Map

LFS: Observations

• LFS uses checkpoints to decrease
recovery time
– Checkpoint region points to all blocks in the

inode map

• LFS outperforms SunOS FS for
– Small writes
– Many file creates

LFS: Coping With a Finite Disk

• Divide disk into segments of size s
– Time to write s bytes >> rotational + seek

latency
– s << buffer cache size

• Idea is to write whole segments at once
• Cleaner runs periodically

– Bottom line: no one really knows the cleaning
overhead

2

Database Terminology

Recoverable and
isolated.N/AAtomic

App-specified invariant is
preserved.

Do it all before or all
after.

Do it all or not at all.

Meaning

N/AConsistent

“Consistent”Isolated

“Atomic”Recoverable

System R
Terminology

6.033
Definition

Common Logging Configurations

6.033 Notes,
Figure 9-20

Log
App

Cell
StorageIn

-m
em

or
y

D
B

App Cell
Storage

Log

O
rd

in
ar

y
D

B

App

Cache

Cell
StorageLog

H
ig

h-
pe

rf
. D

B

Core Memory (RAM) Disk

Alyssa P. Hacker’s DBMS

6.033 Notes,
Problem 9.9b

• On-disk log records transactions
• Reference copy of all data in RAM
• Checkpoint: write entire database state to

the log
• Recovery: start from last chpkted state

Log
App

Cell
StorageIn

-m
em

or
y

D
B

Alyssa P. Hacker’s DBMS

C
he

ck
po

in
t

C
ra

sh

Time

T1
T2
T3

T4

T5

What if T3 nested in T2, T2 nested in T1?

Undo

Redo

No work needed

No work needed

Redo

System R

• Take-home design points:
– System R uses shadow files and write-ahead

logging (WAL) to make transactions
recoverable and isolated

– Writes go through the buffer cache, flushed to
disk when necessary

App

Buffer
Cache

Cell
StorageLog

System R

COBOL program with embedded SQL

RSS actions, transactions

Operating System I/O operations

System R RDS Layer (not discussed much in the paper)

System R RSS Layer (bulk of paper)

3

System R Shadow Files

directory

file.current

file.shadow

Data
Page 2

Page
Table 2

Page
Table 1

Data
Page 2
Copy

Data
Page 1

• FILE SAVE: file.shadow � file.current
• FILE RESTORE: file.current � file.shadow

System R Write-Ahead Logging

• Commit
• Checkpoint
• How is write-ahead logging useful?
• “Golden Rule” of Recoverability

– Never modify the only copy of data

System R Checkpoint and Recovery

• Checkpoint:
– Write checkpoint log record
– FILE SAVE every shadow file
– Remember log address of checkpoint record

• Recovery:
– FILE RESTORE files to their shadowed

versions
– Determine losers, winners
– Undo or redo as necessary

System R Recovery

Time

C
he

ck
po

in
t

C
ra

sh

T1
T2
T3

T4

T5

Undo

Redo

No work needed

No work needed

Redo

IBM IMS Database System

• Version 1 (1968) Isolation Protocol
– A transaction may read only data that has

been written by previously committed
transactions.

– A transaction must acquire a lock for every
data item that it will write.

6.033 Notes,
Problem 9.3

IBM IMS Database System

1 BEGIN (T1);
2 ACQUIRE (lock of y);
3 temp1 � x;
4
5
6
7 y � temp1;
8 COMMIT (T1);
9

1 BEGIN (T2);
2
3
4 ACQUIRE (lock of x);
5 temp2 � y;
6 x � temp2;
7
8
9 COMMIT (T2);

Initially, x=3
and y=4

Values after this execution completes? Have we achieved isolation?

Intent: T1 assigns y=x; T2 assigns x=y

4

Atomicity Concepts

Chapters 9 and 10
LFS, System R, Chocolate,

Unison, Durability

Reconciling Two Filesystems

6.033 Notes,
Chapter 10D

• Quiesce the filesystems to be reconciled
• Given left, right, last reconcile time=lrt

if (modtime(left) > lrt) then
copy left to right

else
delete left

if (modtime(right) > lrt) then
copy right to left

else
delete right

if (modtime(left) > lrt AND modtime(right) > lrt) then
/* conflict */

else if (modtime(left) > lrt) then
copy left to right

else if (modtime(right) > lrt) then
copy right to left

Unison
• Reconciles a file system on a remote host
• Optimistic vs. pessimistic concurrency

control
• State-based vs. log-based concurrency

control
• Detecting changes

– Modification time
– inode number
– Cryptographic fingerprint

Protecting Information

Chapter 11 and Appendices,
Slammer, DoS,

Reflections on Trusting Trust,
Why Cryptosystems Fail,

Lampsons’s Hints for System Design

Slammer: Buffer Overruns

argv

argc

Frame pointer

Return address

buffer[1023]

buffer[0]

int main(int argc,
char **argv) {

char buffer[1024];
gets(buffer);
return 0;

}

�
�
�

In
cr

ea
si

n
g

m
em

or
y

ad
dr

es
se

s

How not to read input into your
program:

This program could have read
input from the network instead
of the keyboard, resulting in a
remote exploit!

S
ta

ck
 g

ro
w

s
do

w
nw

ar
d

Slammer: Design and Lessons
• Slammer exploited a similar buffer overrun

in MS SQL Server 2000
• Very simple exploit program

– Send identical attack packets to random IPs,
as fast as possible

• Exponential attack rate
• Lesson to users: close unused ports
• Lesson to OS vendors: be secure by

default

5

Internet Denial of Service

• TCP SYN flooding
– Solution: SYN cookies: push burden onto

client

• Reflectors
– ICMP Smurf attack

• Solution: ingress filtering

