Ay I Tha Eine) Sinstins

Gl A s (BT il)
e AT F IR IRS aa)

* 9-10:30AM on Thursday, May 19, 2005
« Johnson Ice Rink

+ All material from Lecture 16 (April 4)
through Recitation 26 (May 12)

* Bring your notes!
Print out the Unison paper and bring it.

Atomicity Concepts

Chapters 9 and 10

LFS, System R, Chocolate,
Unison, Durability

LFS: Motivation
RAM is cheap, so:

— The buffer cache will be large

— Reads will be “absorbed” by the
buffer cache

— Let’s design a filesystem that
makes writes really fast

LFS: On-Disk Layout

y_ ~
soi o wifsse] e[oo [we]
W

mkdir (“/ete”, 0);
fd = open(“/etc/group”, O_RDWR | O_CREAT);
write (fd, buf, 5000);

D Segment Summary D Data
D Inode D Inode Map

LFS: Observations

» LFS uses checkpoints to decrease
recovery time

— Checkpoint region points to all blocks in the
inode map

* LFS outperforms SunOS FS for
— Small writes
— Many file creates

LFS: Coping With a Finite Disk

Divide disk into segments of size s

— Time to write s bytes >> rotational + seek
latency

— s << buffer cache size
Idea is to write whole segments at once
Cleaner runs periodically

— Bottom line: no one really knows the cleaning
overhead

Database Terminology

6.033 =HELE Meanin
Definition | Terminology 9
Recoverable | “Atomic” Dot all or not at all.
Isolated “Consi , | Do it all before or all
solate onsistent after.
Recoverable and
Atomic N/A isolated.
App-specified invariant is
Consistent N/A pfezef\’,ed_

Common Logging Configurations

[as]

2 | App "

>

et Cell @

E

= Storage

@ Cell

g App Storage

© L

£ Log

e}

5| App | —_] Cell

g Log) | Storage

5 T—» Cache ' <

T 6.033 Notes,
Core Memory (RAM) Disk Figure 9-20

Alyssa P. Hacker's DBMS

» On-disk log records transactions

» Reference copy of all data in RAM
» Checkpoint: write entire database state to

the log

Alyssa P. Hacker's DBMS

—
N
®

T3 *——e

No work needed

onrk needed

T4 o——

» Recovery: start from last chpkted state ‘g T5 '—':
Q.
= hﬁedo =
[a0] o [}
8| app = £ g
o
5| 1 Cell @
£ Storage 6.033 Notes, What if T3 nested in T2, T2 nested in T1?
Problem 9.9b Time
System R System R
App = Cell
Buffer ’@ Storage COBOL program with embedded SQL
Cache

» Take-home design points:

— System R uses shadow files and write-ahead
logging (WAL) to make transactions

recoverable and isolated

— Writes go through the buffer cache, flushed to

disk when necessary

System R RDS Layer (not discussed much in the paper)

RSS actions, transactions

System R RSS Layer (bulk of paper)

Operating System /O operations

System R Shadow Files

Data
7| Page 1
directory ,/ /

4 Data

file.current LD Page 2

file.shadow

Page Data

Table2]| > Page 2

Copy

FILE SAVE: file.shadow « file.current
FILE RESTORE: file.current « file.shadow

System R Write-Ahead Logging

+ Commit
» Checkpoint
» How is write-ahead logging useful?

 “Golden Rule” of Recoverability
— Never modify the only copy of data

System R Checkpoint and Recovery

Checkpoint:

— Write checkpoint log record

— FILE SAVE every shadow file

— Remember log address of checkpoint record
Recovery:

— FILE RESTORE files to their shadowed
versions

— Determine losers, winners
—Undo or redo as necessary

System R Recovery

—
N
[}

T3 ° }work needed
1y vt

T5 &——*

Checkpoint
Crash

[Time_)

IBM IMS Database System

 Version 1 (1968) Isolation Protocol

— A transaction may read only data that has
been written by previously committed
transactions.

— A transaction must acquire a lock for every
data item that it will write.

6.033 Notes,
Problem 9.3

>

IBM IMS Database System

Initially, x=3 i . . . _
Intent: T1 assigns y=x; T2 assigns x=y
=

< 1BEGIN (T7); 1BEGIN (T2);
2 ACQUIRE (/ock of y); 2
3templ « x; 3
4 4 ACQUIRE (lock of x);
5 5temp2 «—y,
6 6 x « temp2;
7y« tempt; 7
8 COMMIT (TT); 8
9 9 COMMIT (T2);

Values after this execution completes? Have we achieved isolation?

Atomicity Concepts

Chapters 9 and 10

LFS, System R, Chocolate,
Unison, Durability

Reconciling Two Filesystems
» Quiesce the filesystems to be reconciled
* Given left, right, last reconcile time=irt

if (modtime(left) > Irt) then
copy left to right
else
delete left

if (modtime(right) > Irt) then
copy right to left

else
delete right

if (modtime(left) > It AND modtime(right) > Irt) then
/* conflict */

else if (modtime(left) > Irt) then

copy left to right

else if (modtime(right) > Irt) then
copy right to left 6.033 Notes,
Chapter 10D

Unison

* Reconciles a file system on a remote host
+ Optimistic vs. pessimistic concurrency
control
+ State-based vs. log-based concurrency
control
« Detecting changes
— Modification time
—inode number
— Cryptographic fingerprint

Protecting Information

Chapter 11 and Appendices,
Slammer, DoS,
Reflections on Trusting Trust,
Why Cryptosystems Fail,
Lampsons’s Hints for System Design

Slammer: Buffer Overruns

How not to read input into your argv

program:

: i s argc
int main(int argc,

char **argv) {
char buffer[1024];
gets (buffer);
return 0;

}

Frame pointer

Return address

Stack grows downward

buffer[1023]

Increasing memory addresses

This program could have read
input from the network instead
of the keyboard, resulting in a

remote exploit!

Slammer: Design and Lessons

» Slammer exploited a similar buffer overrun
in MS SQL Server 2000
* Very simple exploit program
— Send identical attack packets to random IPs,
as fast as possible

» Exponential attack rate
» Lesson to users: close unused ports

» Lesson to OS vendors: be secure by
default

Internet Denial of Service

» TCP SYN flooding

— Solution: SYN cookies: push burden onto
client

» Reflectors

—ICMP Smurf attack
+ Solution: ingress filtering

