
Vincent Yeung
6.033 Section #8
Saltzer/Garfinkel 1pm

6.033 Design Project – Executive Summary

Purpose
This report describes a software system used for video surveillance. The design of the system
had three primary goals: fault toleration, scalability, and graceful performance degradation under
heavy workloads. Other issues such as performance optimization were not treated with the
highest priority in this design as the hardware was assumed to be fast enough to handle
reasonable workloads within the surveillance system’s original specifications.

Design Overview
The system consists of a central master process that is responsible of spawning and maintaining
child processes, each of which obtains a short video clip from a camera, passes it through the
transcoder, runs the AI analysis, and obtains the most suspicious frame of the video and its
“threat level.” If the threat level is high, the process transmits the suspicious frame to the web
server process, which will store the image in a database. The web server serves images from
this database to human spotters over the Internet for further review. If the spotters decide that
the image appears suspicious, the system will trigger its alarm.

The following diagram summarizes the operation of the software system:

Video Processing
The master process creates a new child process for every camera. Each child process does the
following in its lifespan:
1. If there is no open connection to its camera, initiates one using HTTP GET and reads a fixed

amount of data from the stream.
2. Executes the transcoder routine to convert the stream into JPEG.

1

Vincent Yeung
6.033 Section #8
Saltzer/Garfinkel 1pm

3. Executes the AI routine to identify the most suspicious frame and its threat level.
4. If the threat level is above a fixed threshold, send the suspicious frame to the web server.
5. Terminates.
To ensure that erroneous child processes, such as those in infinite loops, know to stop consuming
system resources, each process has a timed alarm that will terminate the process when triggered.

The master process is signaled when a child process terminates, at which point it spawns a new
child process on the same camera. The master process also uses status information it receives
about the terminated child to determine if the termination was caused by a timeout from the
alarm. If consecutive child processes on the same camera time out, the master process will
decide there is an overload and wait using an exponential back-off scheme before spawning new
processes on the camera.

Web Server
The web server uses a SPED design, which is appropriate in this system for two reasons. First,
compared to many other web server designs, SPED is simple. Second, SPED’s biggest
drawback, process blocking during disk I/O, never occurs in this system because all data is
stored and accessed from RAM and not a hard disk.

The video processing threads described in the previous section alert the web server about
suspicious images using HTTP POST. When a frame is determined to be suspicious by the
software, it is attached with its originating camera number, current time, and estimated threat
level and sent to the web server. The web server has a task listening to these updates, among
the other requests it receives. It receives the image and assigns it a unique identifier. The
server then stores the information in a simple linked-list queue.

Human spotters initiate a connection with the web server using HTTP GET and are assigned a
spotter number. Upon a new image request, the server will select the first image starting from
the front of the queue that has not already been served to the spotter making the request.
Spotters’ responses are sent via HTTP POST, and the web server will use them to change the
threat level of the image. The threat level increases or decreases by a constant amount, or
remains unchanged, depending on whether or not the spotter thinks there is suspicious activity, or
if he/she is uncertain. If the updated threat level goes above a high threshold, the system alarm
is triggered; if it goes below a low threshold, the image is discarded. Finally, if an image has
received more than a threshold number of responses and still remains in the “uncertain” threat
level range, it is also removed from the database.

Feasibility
The system achieves fault isolation by having a separate process for each camera. In addition,
since each process only works on its camera for a short period of time, other errors such as
infinite loops can be easily detected with the use of timed alarms. The system is scalable
because only a few global numerical parameters need to be changed to support additional
cameras, and the design employs an exponential back-off waiting scheme to help the system
adapt and recover from occasional overload.

2

