
NIMBLE: Networked Identification and Management of Bovine on 
Large Expanses 

6.033 DP #2 B. Horn TR11 
Ryan Adams, Shantanu Sinha, Chris Taylor 

{iceman, ssinha, taylorc}@mit.edu 

 
Abstract 

Herd management on large cattle ranches is a 
difficult task.  Most functions on cattle ranches 
are done manually.  As such, ranches stand to gain 
significant benefits with the aid of technology.  In 
this paper, we present the design of NIMBLE, 
Networked Identification and Management of 
Bovine on Large Expanses.  NIMBLE is an RFID 
based application that automates many functions 
that cattle ranchers must perform.  NIMBLE aids 
ranchers with cattle identification and 
management tasks.  The application offers several 
novel services including cattle location tracking, 
event notifications, and data access in the pasture.  
NIMBLE addresses the unique constraints of 
ranches that cover thousands of acres and manage 
thousands of cattle. 

1. Introduction 
Large ranches have the difficult task of 

managing their cattle herds.  They must keep track 
of large amounts of information about their herds, 
including data on historical feedings and 
vaccinations, present whereabouts, and general 
profile information.  The problem is especially 
challenging on large ranches which may contain 
anywhere from hundreds of acres to several 
thousands of acres of pastureland.  Typical cattle 
herds can range from anywhere between a few 
hundred to several thousands.  

Current cattle management processes are 
typically handled manually.  Most cattle 
identification is done using numeric lables and 
paper records. When a herd of cattle must be 
vaccinated, a rancher begins by rounding up the 
herd and driving it into a large holding pen.  From 
the pen, each individual cow is directed into a 
smaller pen which corresponds to a particular 
vaccination that must be administered. Cows are 
mapped into these smaller pens based on their 
numeric labels.  Variants on this method are used 

for most identification, inventory, and 
classification tasks. Cow records, which are often 
stored on paper, are manually updated and 
transcribed into the filing system used at the 
ranch.  

One can easily imagine the difficulty of using 
numeric labels and paper records for cattle herd 
management.  When a cow must be identified, the 
numeric label must be physically read from the 
body of the cow.  While in the pasture, the 
appropriate records must be located in order to 
determine the tasks scheduled for a particular 
cow. Finally, any information recorded in the 
pasture must be transcribed or filed at the ranch.  
Clearly, this manual system is prone to error and 
is an inefficient use of the rancher’s time. The 
difficulties associated with managing large 
numbers of cows prevent many ranches from 
scaling to larger herd sizes. 

RFID technology can offer ranchers significant 
productivity improvements.  In this paper, we 
present NIMBLE, Networked Identification and 
Management of Bovine on Large Expanses.  
NIMBLE is an RFID-based application that is 
uniquely suited to the needs of cattle ranchers.  
While version 1.0 of NIMBLE specifically 
focuses on the needs of cattle ranchers, the 
application architecture can be readily extended to 
the needs of other types of ranchers as well. 

NIMBLE uses RFID technology, a sensor 
network, a central database and a thick-client user 
interface to automate the maintenance and 
management of large cattle ranches.  NIMBLE’s 
design scales to ranches that cover thousands of 
acres and maintain thousands of cows. 

The use of RFID technology automates the 
cattle identification process.  Passive, electronic 
tags embedded in the cattle allow RFID readers to 
quickly and accurately identify cattle.  RFID 
readers are attached to a mesh network of mote 
computer nodes located throughout the pasture. 
Each network node allows information about the 



 - 2 -

herd to be sent back to the ranch from the pasture.  
The central database automates the storage of 
individual records for each cow.  The thick-client 
user interface ensures that ranchers have access to 
all of their information while they are in the 
pasture.  Finally, the introduction of RFID 
technology also provides benefits beyond what 
was possible with a label-based paper system, 
such as cattle location tracking, event notification 
and data access in the pasture. 

The rest of this paper is organized as follows.  
Section 2 describes the assumptions and 
requirements behind NIMBLE.  Section 3 
provides a high-level overview of the system 
model and application architecture.  Section 4 
explores the major design decisions and trade-offs 
made in NIMBLE’s design.  Section 5 discusses 
the performance, scalability and feasibility 
characteristics of NIMBLE.  Finally, section 6 
concludes this paper with a summary of NIMBLE. 

2. Design Assumptions & Requirements 
NIMBLE’s design makes several assumptions 

about typical large ranches.  First, large ranches 
are typically organized   hierarchically into 
pastures partitioned into subdivisions usually 100-
200 acres in size, which we will call major 
pastures.  Each of those subdivisions is 
subsequently divided into smaller sections, 
typically 10-20 acres large, which we call minor 
pastures.  A typical large ranch may have 
hundreds of cows grazing within a major pasture. 

The goal of NIMBLE is to automate herd 
management and identification of large cattle 
ranches, covering thousands of acres and 
maintaining thousands of cattle.  Specifically, 
NIMBLE assists ranchers with the following 
tasks: 

• Location tracking – present cattle 
locations should be accurately available to a 
range of major pastures within a 6 hour 
period.  A 6 hour period provides a reasonable 
amount of locality in the attempt to find a 
particular cow. 
• Profile management – herd information 
must be available to ranchers whether they are 
at the ranch or in the pasture, both for input 
and output. 
• Event notifications – the application must 
be able to notify the rancher in response to 

salient events.  Some examples of interesting 
events include vaccination notifications, 
feeding notifications, and lost cow 
notifications, among others. 

Since most ranchers are not savvy technology 
users, the user interface must be extremely simple.  

NIMBLE is most likely extensible to the 
management of other types of livestock.  
However, the application is designed with the 
specific requirements of cattle ranches in mind. 

Finally, while cost is a significant 
consideration in the design of the application, 
completeness and correctness of design prevails 
when trade-off decisions are made.  

3. System Model 
NIMBLE consists of three major components: 

an RFID sensor network, a data repository, and a 
user interface. A high-level model is illustrated in 
Figure 1. 

 
Figure 1 System Architecture 

The sensor network tracks the locations of 
cattle in the pasture.  It generates a reasonably 
current stream of cow-location events. A cow 
location event represents the sighting of a cow at 
some location in the pasture. Each cow is 
implanted with an RFID tag containing a globally 
unique tag ID.  

An array of RFID readers located throughout 
the pasture reads these tags, generates cow-
location events, and sends them to the repository 
node.  The network topology is a mesh of nodes 
that maintain routes through neighbors to a special 
node designated to be the repository node.    The 



 - 3 -

repository node is configured at deployment time 
and is directly connected to the database. 

The database consists of three components, the 
data repository, the notification thread and the 
synchronization module.  The data repository 
stores a set of bindings that map RFID tag IDs to 
cows.  Each binding is associated to relevant data 
such as a cow’s vital statistics: weight, health, 
vaccination history, identifying marks, genealogy, 
etc. As cow location events arrive from the sensor 
network, they are added to the data repository, so 
that the repository contains a coarse location 
history for each cow. The notification thread 
analyzes data obtained from the pasture and 
generates notifications of interesting events.  The 
synchronization module allows the data repository 
to be accessible off-line, to allow a user to take 
data into the pasture. 

The user interface will be initially available for 
laptops and PCs. The client allows users to 
generate reports about the herd, edit vital 
statistics, add new animals, and flag dead, lost, or 
sold animals.  While on the network (typically at 
the ranch), the client interacts with the data 
repository directly. When offline, the client reads 
and modifies a local snapshot of the database that 
is synchronized with the repository when the 
client returns to the network.  

4. System Details 
This section covers the details of the major 

components of NIMBLE.  Each subsection 
contains a discussion of the trade-offs and 
decisions behind the design of the application. 

4.1. Tagging 
NIMBLE presents a unique set of requirements 

for RFID tag technology.  This section provides a 
discussion of these requirements, and presents the 
advantages of the technology that was selected for 
NIMBLE. 

4.1.1. Tag Requirements 

The cattle population in the United State is 
approximately 100M, with approximately 45M 
calves born each year [8]. Assuming that this rate 
is maintained, there will be approximately one 
billion cows born over the next 25 years.  RFID 
tags that support tag IDs greater than 64 bits 
clearly provide a sufficient namespace. 

Because NIMBLE only determines cattle 
locations to the granularity of a major pasture, 
passive RFID tags must offer enough range to 
cover the entire width of a pasture gate.  Typical 
pasture gates are 7 meters wide.  Passive RFID 
tags are preferable to active tags for several 
reasons.  First, passive tags are cheaper than their 
active counterparts.  Second, typical battery life 
for an active tag is less than 5 years, which is 
shorter than the lifespan of a calf-bearing heifer.  
Once the battery dies, the cow would need to be 
retagged and its information would need to be 
updated to match the new tag.  

The use of tags with ranges that cover the 
width of a gate allows large movements of cattle 
to be tracked by placing readers at the junctions 
between pastures. Mounting a reader in the middle 
of a junction is unreasonable, since it would be 
susceptible to trampling and destruction. Thus, a 
functional minimum range for the RFID 
technology is approximately 7 meters. 

Fortunately, cows do not typically move very 
quickly.  Furthermore, the large size of cattle will 
prevent extremely high densities of cattle within 
proximity of the reader. Thus, data will not need 
to be sampled at a very high frequency.  Cattle 
typically move no faster than 2-3 miles per hour 
(3-4 feet per second).  Therefore, a reading rate of 
1-2 RFID tags per second should be sufficient to 
capture most cow-location events.  

4.1.2. RFID Tags 

The range requirement places the largest 
restriction on the selection of RFID technology.  
Two types of RFID tags meet NIMBLE’s 
requirements.  They operate in two different 
frequency ranges, UHF (868 to 915MHz) and 
Microwave (2.45GHz). Standard RFID tags 
utilize the 13.56MHz frequency range but their 
ranges do not exceed one meter.  Thus, standard 
tags are not a viable option for NIMBLE. 
Microwave tags yield the largest distances, but 
currently available microwave tags are 
prohibitively expensive and have large power 
consumption requirements. 

The EcoTag, developed by Trolley Scan of 
South Africa, is an example of a suitable UHF tag. 
Measurements conducted using passive 
transponders have demonstrated a range of 9-12 
meters.  Moreover, power consumption at the 



 - 4 -

reader is less than 0.5 Watts. The EcoTag system 
can read up to 20 tags per second.  

The EcoTag transponder is approximately 
80mm long, 27mm wide and credit card thin [6]. 
This small size allows an EcoTag to be embedded 
within a conventional cow ear tag, illustrated in 
Figure 2. Conventional ear tagging technology 
utilizes tear resistant polyethylene with ultraviolet 
inhibitors to prevent solar deterioration. As a 
result, NIMBLE ear tags are waterproof and 
resistant to damage from the sun.  Existing 
applicator equipment can be used to deploy tags to 
cattle.  Initial tags may be deployed  by the same 
processes that traditional tags are deployed (most 
likely at the vaccinations or “roundups”). 

 

1345
 

Figure 2 A standard cow ear tag with an embedded 
RFID tag 

The cost of the transponders varies with 
volume, but a reasonable expected cost is $5 per 
tag.  Though this price is somewhat expensive, the 
tags are necessary to meet NIMBLE’s 
requirements.  We expect the prices to fall as UHF 
tags become more widespread.   EcoTag 
transponders support 70-bit tag IDs, but for the 
purposes of NIMBLE, we will only use 64-bits.  
The EcoTag RFID readers provide an RS-232 
interface, allowing them to easily interface to an 
embedded computer. 

4.2. Sensor Network 
The sensor network is the mechanism that 

relays information from the pasture back to the 
ranch home.  This section describes the sensor 
network in detail.  It explores the design of a 
sensor node and describes the network routing 
protocol. Finally, this section analyzes the power 
and price characteristics of sensor nodes. 

4.2.1. Node Architecture 

A NIMBLE sensor node contains the 
following components: an RFID reader, a 

microcomputer, a power supply, and one or more 
network devices. The microcomputer is a 
Berkeley mote with an 8Mhz processor and 32K 
of RAM, and consumes extremely low power.  
NIMBLE utilizes a solar power/battery 
combination. The power supply is discussed in 
section 4.2.8.  The network device is a low-
bandwidth RF modem, capable of transmitting to 
nodes 6-7 miles away. 

Each RFID reader generates a stream of cow 
location events that correspond to cows entering a 
reader’s range.  The mote archives and 
timestamps the location event, storing it in a hash 
table that maps tag IDs to timestamps. If the mote 
receives multiple location events for a single tag 
ID, it discards all but the most recent. 

Every six hours, the mote creates a message 
containing the contents of the hash table and sends 
it over the network to the repository. Once the 
message is transmitted, the table is cleared to 
provide space for new event storage. The event 
table will use all available RAM.  Since cows are 
not very mobile, we do not expect a large number 
of location events to occur within a 6-hour period.  
Thus, a mote’s hash table should approach the 
size of RAM very rarely, if ever.  Having said 
that, NIMBLE’s message delivery protocol 
handles this case readily; this protocol is 
described in greater detail in section 4.2.5. 

4.2.2.  Node Placement 

Most ranches are subdivided into fenced-off 
major pastures of 100-200 acres each. NIMBLE 
sensor nodes are stationed at the gates between 
pastures, so that a cow moving from one major 
pasture to another must pass a sensor node. Since 
cows move between pastures periodically through 
random movement and planned herding, NIMBLE 
sensor placement provides enough data to locate a 
cow to the granularity of a major pasture.  

Each node is also assigned a node ID, which is 
registered in the data repository before 
deployment.  This node ID allows the origin of 
network messages to be determined.  Since most 
pastures are organized in a way that optimizes 
fence costs, we expect that a 200 acre major 
pasture will be fenced off as a 3000 feet x 3000 
feet enclosure.  As a result, the distance between 
two nodes is likely to be a mile or less; the RF 
modem provides ample coverage. In fact, each 
node will most likely be able to communicate 



 - 5 -

several other nodes, which provides additional 
network redundancy. 

4.2.3. Routing Protocol 

In order to route messages from a source node 
to the repository node, the nodes in the sensor 
network utilize a simple routing protocol.  

One node is designated as the repository node 
at deployment time. The repository node is a 
sensor node that has message delivery privileges 
to the data repository. Each sensor node knows of 
a single route to the repository node, called its 
path.  In fact, the nodes and routes form a tree 
with the repository node at the root. Routes are 
advertised "down" the tree (away from the root), 
and messages are sent "up" the tree (toward the 
root).   The path contains a list of nodes through 
which a transmitted message will pass with high 
probability on its way to the repository (in the 
case of a node failure, a route could change while 
a message is being transmitted). 

4.2.4. Route Discovery 

Routes are discovered and updated using 
advertisements. Every half-hour, each node in the 
system broadcasts the route from itself to the 
repository. When a node receives an 
advertisement, it may choose to replace its route 
information with the new advertised path through 
the advertising node.  

A node responds to an advertisement as 
follows. First, it checks if the advertised path 
contains its own node ID. If its node ID is present, 
the advertised route is discarded to prevent 
routing cycles. Second, if the receiving node does 
not already have a route to the repository node, 
the advertised route becomes that route. 
Otherwise, the advertised route is compared with 
the stored route.  If the advertised route is shorter 
in the number of hops, it is accepted as the new 
stored route.  The advertised route is also accepted 
if the advertised route begins with the same node 
as the stored route, allowing effects in the 
upstream network to be propagated to a node. 

The routes generated by this protocol stabilize 
when each node knows the shortest available 
route to the repository node. In this case, route 
length is equivalent to the number of intermediate 
nodes. This stabilization should occur within 30*d 
minutes of the most recent node addition/removal, 
where d is the depth of routing tree.  Depending 

on system capacity measurements, advertisement 
periods can be adjusted without loss of generality. 
Route stabilization occurs automatically, without 
human input.  

Failed nodes will cease to advertise routes. As 
a result, messages from downstream nodes will 
not reach the repository node.  If a downstream 
node does not hear an advertisement from an 
established route (i.e. an advertisement such that 
the first node in the advertised route matches the 
first node in the path), the node will clear its path. 
The node will then accept the next new route 
advertisement it hears. 

Because nodes must be registered with the data 
repository before being deployed, node failures 
can be detected by the database, which flags them 
for attention. See the section 4.3.1 for details.  The 
following pseudocode outlines the route discovery 
process: 

void init() { 
if (myID() == repositoryID) 
  path = []; 
else 

path = NULL; 
} 
 
void advertise() { 
  // to be executed every 30 minutes 
  if (path != NULL) 
    transmit(cons(myID(),path)); 
} 
 
void receive_route(p) { 
  if (member(myID(), p)) 
    return; 
  if (path == NULL || 
      first(p) == first(path) || 
      length(p) < length(path)) 
    path = p; 
} 
 
void onTimer() { 
  if (haveNotHeardInLastHour( 
       first(path))) 
    path = NULL; 
  ... other timer code ... 
} 

4.2.5. Message Delivery 

NIMBLE messages are data packets containing 
the following fields: 16-bit node ID, a 32-bit 
current timestamp, an 8-bit value indicating the 
number of events contained in the packet, and a 
list of events.  Each event is a 64-bit RFID tag ID 
followed by a 32-bit time-stamp.  

A node delivers a packet by transmitting the 
packet pre-pended with a header containing a 16-
bit destination node ID.  The destination is 



 - 6 -

selected by choosing the first node from its path. 
This node is then responsible for forwarding the 
packet to the repository.  

Packet forwarding is also straightforward. 
First, the receiving node confirms that it is the 
intended recipient by comparing the destination 
field of the packet header to its nodeID.  If the 
values do not match, the packet is discarded.  
Otherwise, one of two things happens. If the 
receiving node is the repository node, the packet 
is delivered to the repository. If not, the receiving 
node forwards the packet to the first node in its 
path. 

The packet forwarding system also enables the 
database to detect node failures. Since all nodes 
are registered with the repository and must send a 
packet every six hours, any node that has not sent 
a packet in twelve or eighteen hours has most 
likely experienced an equipment failure, either in 
the node itself or in one of the intermediate nodes 
along its route. These failures are flagged for 
attention so that the node can be repaired.  

The following pseudo-code illustrates 
NIMBLE’s packet delivery protocol: 

void send(packet) { 
  if (path != NULL) 
    transmit(first(path), packet); 
} 
 
void forward(nexthop, packet) { 
  if (myID() != nexthop) 
    return; 
  if (myID() == repositoryID) 
    addToRepository(packet); 
  else 
    transmit(first(path),packet); 
} 

If a node must send a large number of events 
within a 6-hour window, sending all events in a 
single message could potentially overrun the 
receive buffer of intermediate nodes. To handle 
this contingency, sensor nodes fragment large 
messages into a series of smaller independent 
packets, each containing its own header. Each 
fragment is sent serially with a delay of 1-2 
minutes between each transmission. This 
approach permits a large number of events to be 
sent without risking overrunning intermediate 
node receive-buffers. 

4.2.6. Lost Messages 

Most RF modems offer some link-level error 
detection and correction.  Wireless links typically 
exhibit 1% packet corruption rates [1]. Since cow 

location data is not mission critical data, NIMBLE 
simply drops corrupted packets.  The loss incurred 
due to packet corruption is tolerable. The 
alternative approach is to implement an 
acknowledgment based message protocol that 
ensures message delivery. However, 
implementing such a system imposes significant 
complexity in the transmission protocol and is not 
worth the cost.   

4.2.7. Line of Sight and  Reliability 

The network architecture discussed above is 
more than likely sufficient for most NIMBLE 
deployments.  However, NIMBLE RF modems 
depend on line of sight.  Although most ranches 
are large expanses of flat land, on some ranches, 
hills and other fixed obstacles could limit the 
range of node transmissions. Furthermore, the tree 
topology created by the routing protocol could 
leave large sub-networks vulnerable to node 
failures. For instance, a node failure near the root 
of the tree may prevent a substantial fraction of 
the sensor network from delivering packets.  
Thus, we propose two alternative network 
topologies, both compatible with NIMBLE’s 
network protocol. 

The addition of relay stations provides a viable 
solution to the problems described above. A relay 
station is a standard sensor node with the RFID 
reader removed. A relay station is less costly than 
a sensor node in both the power and price 
dimensions. Relays execute the same routing 
protocol as sensor nodes. They are deployed on 
fence lines or on tall poles in the pasture to bridge 
gaps between sensor nodes. They can also provide 
alternative paths for packets in the event of an 
upstream node failure.  

Reducing routing tree depth may sometimes be 
necessary, particularly on very large ranches. 
High routing tree depth poses two problems. First, 
deep nodes face a large number of potential 
failure points along the message delivery path. 
Second, nodes near the root could face traffic that 
exceeds available system resources. One possible 
solution is to deploy a hierarchical topology, with 
high powered “supernodes,” having a directional 
antenna that connects directly to the repository or 
another supernode. Thus, the network topology 
would consist of clusters of network nodes 
communicating to the repository through these 
supernodes. 



 - 7 -

4.2.8. Power and Price Considerations 

The EcoTag reader requires continuous power 
of 0.5W. Thus, the reader consumes 12 W-hrs of 
energy, daily. The EcoTag reader costs 
approximately $100.  

A 9600 baud RF modem costs approximately 
$80.  It consumes 150 mA during transmission, 50 
mA during reception, and 1 µA when idle, at 5 
VDC [2]. A data packet of 1.8 kilobytes requires 
0.2 seconds of transmission time, corresponding 
to 0.042 mW-hrs of energy per transmit, and 
0.056 mW-hrs of energy per forward.  A 
conservative upper-bound of twenty packets sent 
by a node per day, forwarding packets for fifty 
other nodes, requires a daily energy consumption 
of 56.84 mW-hrs. 

A mote computer consumes approximately 
1.75 W-hrs/day, and costs approximately $25 
when purchased in volume [3]. 

NIMBLE nodes are primarily powered by 
solar panel. We expect that the daily energy 
consumption of a NIMBLE sensor node to be less 
than 14 W-hours.  To withstand periods of bad 
weather, a NIMBLE node may operate for up to 
10 days without sunlight. A lead-acid battery with 
a 36 Amp-Hour capacity at 6 Volts costs 
approximately $40 [4]. A 5-Watt solar panel 
supplies 40 W-hrs of power on a sunny day and 
can be purchased for about $70 [5].  A solar panel 
of this capacity should be able to supply sufficient 
power to the sensor node and recharge the battery 
simultaneously.  Thus, standard sensor node 
components should cost approximately $315. 
Field experience will most likely reduce costs. 

4.3. Central Database 
The central database serves as a sink for all 

messages received and processed by the 
repository node.  It must support full querying, 
including the ability to search on any field, 
perform joins and updates, and support 
synchronization with snapshots that have been 
altered off-line. The database is a very simple 
object which consists of three components: a data 
repository, a notification thread and a 
synchronization module.  

The structure of the data in the repository is 
intentionally defined abstractly.  Using abstract 
data structures allows the implementer to choose 
the data storage mechanism that provides the most 

cost-benefit effectiveness (whether it be an 
RDBMS, XML, or otherwise).  As long as the 
database implementation supports searching, 
querying, and synchronization, any data storage 
system will suffice. 

4.3.1. Data Repository 

The data repository is responsible for 
maintaining a simple, generic data structure 
consisting of a set of bindings, each of which is 
associated to three types of data. Figure 3 
illustrates the NIMBLE central data repository 
data structure. 

The bindings are name-value pairs mapping 
RFID tag IDs to cow identifiers. A cow identifier 
is the name assigned to a particular cow and is 
locally unique within the scope of a ranch.  This 
cow identifier is probably the numerical label 
currently used to tag cattle and is analogous to 
SKU numbers in inventory management 
applications.  

 
Figure 3 NIMBLE Data Repository Data Structure 
– each grey box represents a complex data type. 

The advantage of using bindings to cow 
identifiers, rather than directly using RFID tag 
IDs, is straightforward.  Each ranch can 
implement its own local naming scheme.  In 
actuality, each ranch will most likely have a 
naming system already in place.  Using cow 
identifiers allows a ranch to easily port their 
current naming system into NIMBLE, rather than 
requiring them to convert their records to use 
RFID tag IDs. 

Each cow identifier is associated to three types 
of data.  Because simple bindings are used as the 
primary data structure in the database, additional 
types of data can be added, if required in the 
future.  However, we note that the developers of 
NIMBLE would be the ones expected to extend 
the data structure of NIMBLE for future versions. 

Bindings 
RFID tag ID  Cow Identifier 

Vaccination 
History 

(timestamp->type) 

Location history 
(timestamp -> nodeID) 

Profile Data Genealogy 
(tag ID -> relationship)



 - 8 -

First, a location history table maintains data on 
where the cow has grazed over the last year.  This 
data allows ranchers to determine effective 
utilization of the pasture and last known locations 
of their cattle.   

Second, each cow identifier is mapped to 
profile data.  Profile data consists of health 
information, distinguishing marks, value, origin 
(i.e. where it was obtained or where it was born) 
and vaccination history.   Vaccination history is 
non-scalar data consisting of a list of name-value 
pairs, mapping timestamps to a given vaccination.  

Finally, each cow identifier is associated to a 
genealogical history.  Genealogical data is a list of 
name-value pairs: the name is the RFID tag IDs of 
a related cow, and the value is the relationship 
(i.e. mother, father, sibling, etc.).  Using RFID tag 
IDs in this case allows genealogy data to be easily 
transferred between multiple installations of 
NIMBLE, a useful feature when a cow is traded 
between different ranches. 

The data repository also maintains meta-data 
about the NIMBLE sensor network.  The data 
repository maintains a list of node IDs each 
marked by the timestamp of the last message 
received from that node.  This information can be 
used to detect dead nodes and other network 
faults. 

No data is ever deleted from the data 
repository.  If a cow dies or is sold, its entry in the 
database is simply marked ‘inactive’. Space may 
become a concern eventually, but hard drive 
capacity is cheap enough such that we can ignore 
this problem.  However, eliminating deletes 
simplifies the design of the synchronization 
module, described in section 4.3.3. 

4.3.2. Notification Thread 

The second component of the database is the 
notification thread.  The notification thread 
periodically scans the database, searching for 
interesting events.  Examples of interesting 
notifications include the following: 

• No recent location information reported 
for a particular cow identifier (i.e. 
indication of potential cow death or tag 
failure) 

• Vaccinations are due for a particular 
cow 

• Too many cows reported in a particular 
perimeter 

• Several cows have appeared in a new 
location without checking out of their 
old location (an indication of a possible 
fence break or similar fault) 

• Silent node (possible indication of node 
failure or other network fault) 

Each notification is configured to occur on one 
of two events, a data event or a timer event.  A 
timer event is the expiration of some timer.  A 
data event is the arrival of new data from a source, 
such as the network or the user.  For example, 
vaccination information is checked daily.  
However, the broken fence check is performed in 
response to data events (in this case, when new 
data arrives from the network). 

While we do not expect ranchers to implement 
new notifications, new notifications can be added 
easily.  They are specified through a text file, 
which allows NIMBLE developers to create new 
notifications and quickly update a running system. 

4.3.3. Synchronization Module 

The NIMBLE database supports the ability to 
generate snapshots of the database for off-line use 
and synchronize with snapshots that have been 
updated off-line.  The following section describes 
how the synchronization module is used by users. 

To provide synchronization capabilities, data 
items are marked with a GUID and a timestamp 
indicating the last update time. A GUID is a 
globally unique identifier that can be generated 
with a negligible probability of collision. A data 
item is any name-value pair.  A snapshot is an 
exact copy of some part of the repository, possibly 
in entirety, including the GUID and timestamp 
data. When a snapshot is synchronized with the 
central data repository, all data items with new 
GUID values are added to the data repository. If 
an existing data item was modified off-line, the 
synchronization process will alert the user that a 
conflict was found and ask the user which copy of 
the data is accurate.   In most cases, the data item 
with the most current timestamp is be the most 
accurate, though this may not always be the case 
(e.g. if multiple off-line snapshots are modified in 
parallel).  As a result, only the user can correctly 
resolve conflicts. Because deletes are disallowed, 
the synchronization module does not have to 
handle this case.  



 - 9 -

4.4. User Interface 
The NIMBLE user interface is the rancher’s 

point of entry into the system. The user interface 
is a simple tool that allows a rancher to analyze 
the data NIMBLE collects.  The user-interface 
supports two modes of operation, on-line and off-
line.  In on-line mode, the user interface directly 
interfaces with the data repository.  In off-line 
mode, the user interface makes a local copy of 
data repository and interfaces directly to it.  
Because the data repository could become very 
large, off-line snapshots will consist of profile and 
genealogical data and only the most recent 
location notifications for cattle. 

4.4.1. Thick-client Versus Thin-client 

Ranchers need to access to herd data while 
they are out in the pasture.  Since most pastures 
do not have access to the Internet, a thin-client 
application is not feasible.  As a result, the user 
interface is a thick-client application deployed on 
a laptop.   Future versions of NIMBLE may offer 
a PDA based user-interface. 

The laptop contains a tool that obtains a 
snapshot of the database for off-line use and 
synchronizes it to the central repository once the 
laptop is connected at the ranch. 

4.4.2. Transaction Batching 

To support full off-line capabilities, the user 
interface is built to support the batching of 
transactions.  While off-line, the primary use of 
the user interface is to record profile updates.  
These profile updates are stored as a series of 
transactions.  Each transaction is formatted as 
follows: 

Begin 
   <ID> 
   <Cow ID> 
   <Data Item> 
   <Data Value> 
   <Timestamp> 
End 

The ID entry is the GUID of the data being 
inserted or modified. The Cow ID entry indicates 
the cow identifier pertinent to the data being 
inserted.  The data item entry indicates which 
type of data is being inserted (i.e. vaccination 
entry, genealogical entry, or some kind of profile 
data).  The data value entry is the actual data 
value to be stored in the repository.  The 

timestamp entry indicates when the transaction 
entry was created.  The transaction format is 
identical whether used for entering a new cow 
found in the pasture (e.g. when a calf is born) or 
when updating prior information for a particular 
cow. 

When an off-line user interface makes a 
change, the local data repository is updated and a 
transaction record for the change is stored.  These 
updates are necessary so that the user can 
accurately query the local database.  When the 
laptop is synchronized with the central data 
repository, the transactions are replayed into the 
central data repository and subsequently flushed 
from the laptop. 

One concern is that new data items may be 
recorded by multiple user interfaces in the pasture.  
As a result, each data item will create a new 
GUID, even though the data items represent the 
same event.  For example, suppose a calf is born 
and multiple off-line interfaces create a new 
binding for the calf’s tag.  When those interfaces 
synchronize with the central data repository, a 
conflict will occur since one RFID tag ID will be 
inserted into the repository twice.  The user will 
be notified of this conflict and will be required to 
resolve it manually by selecting the correct values.  
However, we expect that ranches will rarely have 
multiple laptops being used to record the same 
data, so these conflicts should be rare. 

5. Discussion 

5.1. System Availability 
RFID readers claim to have MTBF value of 

50,000 hours [7]. We estimate from empirical 
experience that a typical ranch will lose one tag 
per hundred head of cattle per year to predators 
such as coyotes. The RF network component of 
the design has a range capability of six to seven 
miles, exceeding the distance across a typical 
pasture by a factor of ten. The combination of the 
large RF modem range and the dynamic routing 
discovery discussed in section 4.2.4 enables the 
NIMBLE system to tolerate a large number of 
node failures.   

The largest concern for the database is the loss 
of data. Many data backup schemes exist as 
recovery strategies, but are outside the scope of 
this paper. The system also tolerates database 
downtime since the thick-client architecture can 



 - 10 -

provide off-line access.  Although location 
information will not be accessible while the 
database is down, a rancher can continue 
accessing herd data. 

5.1.1. Scalability 

Scalability is an important design requirement 
of NIMBLE. The number of readers required 
scales with the area of the land and the number of 
RFID tags scales with the number of cows.  Two 
facts enable NIMBLE to scale to very large 
ranches.  First, NIMBLE provides only coarse 
grained location information, accurate to within 6 
hours.  Second, cows are not very mobile.  We 
expect that a cow will generate no more than 2 to 
3 location events within a 6 hour window.  On a 
ranch with 10,000 cows, this number of events 
corresponds to a maximum of 21 bytes/message * 
3 messages/cow * 10,000 cows = 610,000 bytes of 
data per 6 hour window. 

5.2. Performance 
One scenario presents a potential performance 

problem for NIMBLE.  If an extremely large herd 
of cattle moves through a gate quickly enough, the 
reader may not interrogate all the RFID tags. In 
this case, some location events are inevitably 
missed. However, readers have ranges on the 
order of 10-12m and interrogation rates up to 20 
tags per second.  Since cows typically move at 
only a few meters per second at peak speeds, the 
probability of this occurrence is low. 

6. Conclusion 
In this paper, we have presented the design of 

NIMBLE, Networked Identification and 
Management of Bovine on Large Expanses.  
NIMBLE is expected to scale well for large 
ranches covering thousands of acres and 
managing thousands of cattle.  We expect that 
NIMBLE will improve the efficiency of cattle 
management and hope that the application allows 
ranches to scale beyond their current systems. 

References 
[1] Balakrishnan, H. Katz, Randy.  Explicit Loss 
Notification and Wireless Web Performance. Proc 
IEEE GLOBECOM Global Internet Conf., 
Sydney, Australia, Nov. 1998.  
[2] http://www.maxstream.net/products_standalo
ne.html 

[3] Mote Comparisons. http://www-
bsac.eecs.berkeley.edu/~shollar/webthesis/formth
e139a.html 
[4] PlanetBattery.com. 
http://www.batteryplanet.com 
[5] Northern Arizona Wind \& Sun. 
http://www.solar-electric.com 
[6] Trolley scan ltd. http://trolleyscan.co.za/. 
[7] Allex iso compatible rfid reader module. 
http://www.allexboulder. 
com/Docs/datasheet/OEMModData.PDF. 
[8] United states census of agriculture, 1997. 
 
 

 


