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Abstract 
The purpose of this project was to design a virtual memory system that 
met three basic design goals: enforced memory modularity, the capability 
of dynamic memory reallocation, and minimized power consumption.  
After analyzing a number of possible designs, a segmented memory system 
was chosen as the preferred implementation.  By performing reads and 
writes in only one memory access and pushing the burden of computations 
to the dynamic allocation procedures (which are invoked very rarely), the 
design presented in this report met all design goals while minimizing 
energy consumption. 

 
 
1 Introduction 
 Adding virtual memory to a computer system is an excellent way to achieve multiple 
design goals.  A system with virtual memory is able to avoid addressing memory using physical 
addresses.  Instead, a virtual memory manager assigns a virtual address to each physical location 
in memory and programs access memory using only these virtual addresses.  This allows a 
system with virtual memory to abstract its actual memory hierarchy; on-board cache, system 
RAM, and hard drives are all accessed through virtual addresses.  Interactions between programs 
and memory also become simpler.  Instead of having to tell a program that it is not stored in 
contiguous physical memory, a virtual memory manager can assign the program a contiguous 
virtual address space.  Finally, virtual memory provides an easy means of enforcing modularity 
between programs.  Each program is given its own virtual address space, and therefore no 
program has the means of accessing another program’s data. 
 The basic concepts of virtual memory continue to apply when a virtual memory system is 
used in an application such as the mote.  By adding virtual memory to the mote, we can enforce 
modularity between individual programs and assign each program a separate address space.  My 
design takes the form of a segmented memory system, in which the kernel maintains a table of 
starting locations for each process’ memory allocation.  A virtual address takes the form of a 
virtual page number, which is used in conjunction with a process ID to create a physical page 
number.  The system can then use this physical address to access the desired data. 

There are several major tradeoffs to consider when designing a virtual memory system 
for the mote.  A good design will minimize power consumption during operation, and as a direct 
result, CPU usage and the number of memory accesses need to be minimized as well.  This 
document will describe my chosen design, explain the tradeoffs it makes, and detail its 
performance when compared to other design alternatives. 
 
2 Design Overview 
 A segmented memory system uses a “base and bound” approach to assign virtual 
addresses.  The Memory Management Unit (MMU) allocates a contiguous block of memory for 
each individual process.  Virtual addresses take the form of an offset within this allocated block.  
Therefore, each process believes that it has been assigned its own separate block of memory that 
begins at memory location 0x00.  The main system kernel is responsible for maintaining a table 
that contains the starting page number of every process.  (This is the address of the first page of 
allocated memory for that process.)  Therefore, when a program attempts to read from a memory 
address, the MMU retrieves the starting page number, adds the virtual page number, and then 
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uses that to access the proper location in memory.  The kernel also stores the amount of memory 
that has been allocated to each process.  If a process issues a read or write command to a location 
that is outside its bounds, the MMU throws a segmentation fault and alerts the kernel of the 
illegal memory access. 
 This segmented memory system also includes procedures for allocating and destroying 
memory, though they require a large number of memory accesses.  If a process makes a request 
for more memory, the system creates the requested amount of memory directly after the memory 
already assigned to the process.  It does this by shifting everything else in memory down by the 
required amount.  The variable that stores the amount of allocated memory for that process is 
also updated, as are the starting page numbers for all the relocated processes.  Analogously, 
when the system destroys a process, it reclaims memory by moving all the other programs up by 
the reclaimed amount of space.  Again, the starting page numbers and allocated space variables 
for all the affected processes are updated.  Finally, when a new program is uploaded to the mote, 
the system allocates space for the program after all the already allocated memory and updates the 
starting page number and allocated space variables for the new process. 
 One important additional subsystem helps ensure that a program cannot access memory 
that the MMU did not assign it.  Since the kernel has full access to the memory (it can access any 
location in memory, regardless of the segment’s owner), a good design needs a way to 
differentiate between calls issued by the kernel and calls issued by user-level programs.  I added 
a kernel/user control bit to assert this distinction.  If the kernel bit is high, accesses to memory 
are sent directly to RAM without passing through the MMU.  If the kernel bit is low (indicating 
user mode), all accesses to memory have their addresses translated by the MMU before the 
locations are passed on to RAM. 
 
3 Design Description 
 The virtual memory system for the mote can be broken down into a number of 
subcomponents.  At the heart of the system is the Memory Management Unit, which is 
responsible for converting virtual addresses to physical addresses.  Overseeing the MMU is the 
operating system’s kernel, which provides the MMU with enough information to perform 
translations.  The OS also runs the software that controls what happens on memory allocations, 
memory destructions, and process context switches.  Finally, a fault control system must be 
implemented to catch illegal memory accesses.  The following sections describe in detail the 
chosen implementation for each subcomponent. 
 
3.1 Virtual Paged Memory 
 As described before, processes in the mote reference memory through virtual addresses, 
which consist of a virtual page number followed by an offset within that page.  The MMU, when 
translating virtual addresses into physical addresses, first converts the virtual page number into a 
physical page number.  It then concatenates the offset to the end of this physical page number, 
creating a physical memory address.  My design divides the 32K of memory into pages of 256 
bytes each.  This page size was chosen because it provided a reasonable compromise between 
granularity and the number of control bits required.  In other words, a page size of 256 bytes 
results in an acceptable amount of wasted (allocated but unused) memory but does not require an 
unreasonable amount of overhead and memory to maintain the internal tables.  Since there are 
128 pages total, seven bytes are required to encode each individual page.  Another eight bytes are 
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required to encode the offset within each page, meaning that each physical address is 15 bits 
long. 
 

OffsetVPN
  15            11             7                             0  
Figure 1: Format of a Virtual Address 

 
The memory is segmented into pages as depicted in Figure 2.  Each process has a starting 

page number (“base”) and a total amount of allocated memory (“bound”) associated with it.  
(Since programs are limited in size to 4K maximum, the OS only needs four bits to represent the 
bound variable.)  Virtual addresses for a process take the form of a 4-bit offset within the 
process’ allocated memory.  When given a virtual address, the MMU adds the virtual address to 
the starting page number of the running process, creating the actual physical page number of the 
requested page.  The MMU also compares the given virtual page number with the stored bound 
of the current process.  If the virtual page number is larger than the bound, then the process is 
trying to access memory that does not belong to it, and the MMU must throw a fault. 

 

Process A
Start Page = 1

Process B
Start Page = 3

00

01

02

03

...

Process A
Bound = 2

 
Figure 2: Diagram of pages in main memory, showing 

the base and bound pointers for two separate processes. 
 
 
3.2 The Memory Management Unit 
 The MMU is the heart of the virtual memory system.  It is responsible for adding a virtual 
page number and the stored starting page number, which creates the physical page number of the 
memory location that the program wants to access.  It is possible to perform these steps in 
software, but that would require an extra CPU operation, wasting both time and power.  In my 
design, I chose to incorporate a hardware adder in the MMU to perform this function.  The adder 
takes in the virtual page number and the stored starting page number and outputs their sum.  
Since the adder runs in an amount of time that is negligible when compared to the 125ns period 
of the system clock, the translation from virtual addresses to physical addresses can take place 
during the same clock cycle as the original memory access call.  Therefore, the MMU does not 
use any extra time or power during a read or write operation. 
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Figure 3: Block diagram of the MMU. 

 
 The MMU also requires some form of internal state to store the starting page number and 
bound of the current process.  My design uses two sets of registers to store these variables.  As 
mentioned before, these base and bound numbers can be stored using seven and four bits, 
respectively, so my MMU requires 11 bits of internal state to function.  The burden of loading 
the proper values into these registers falls upon the operating system; when a context switch 
occurs, the OS must extract the proper values from memory and load them into the Base and 
Bound registers.  Figure 3 depicts the internal organization of the MMU. 
 
3.3 Fault Detection 
 The MMU is primarily responsible for ensuring that no program can access memory that 
has been allocated to another process.  In the design described above, if a program issues a call 
trying to access a page that is beyond its actual page allocation, a simple adder will return a 
physical location that is in the memory space of another process.  This illegal access can be 
solved by properly using the bound variable.  This variable stores the number of pages that have 
already been allocated to the process in question.  Therefore, if a process has been given 4 pages 
and it tries to read from virtual page number 5, it is obviously trying to access a page that is not 
in its address space.  My design includes a simple less-than-or-equal-to comparator to test 
whether or not the physical page number created by the adder is valid.   

MMU RAM
access

fault
out

RAM
chip

enable

/
/
/

/VPN

base

bound

PPN

/ data
out

 
Figure 4: Interactions between the MMU and the RAM.  When an illegal access fault is  

detected, the RAM is disabled, preventing any modification of data from occurring. 
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 If the requested virtual page number is outside the allocated address space of the current 
process, the MMU outputs a fault flag.  This in turn can set of an interrupt within the main 
kernel, causing it to jump to a section of code designed to handle illegal page access faults.  The 
kernel can inform the program that it has tried to read from an invalid location in memory or 
terminate the erring process if it wishes.  The MMU also needs to power down the RAM when 
an illegal access is detected.  If the RAM was allowed to function normally, a program that tried 
to write to a location outside its bounds would actually succeed in getting the write through 
before the fault was detected by the kernel; this is not desired behavior, for it allows a program to 
modify data that belongs to another process.  The interaction between the MMU and RAM is 
shown in Figure 4.  Once again, my design pushes the burden for handling illegal access faults 
onto the kernel, though the MMU itself must initially detect the illegal access and prevent a read 
or write from occurring. 
 
3.4 Context Switching 
 The OS in my design bears much of the burden of the virtual memory system.  This 
section will detail what the OS must do on context switches.  Every time the OS switches 
contexts, or changes the currently running process, it must perform a small amount of overhead.  
This is necessary to ensure that the MMU has enough information to correctly translate virtual 
addresses into physical addresses. 
 The OS must hold two tables for storing the starting page numbers and total allocated 
page numbers for each process.  When the currently running process is changed, the OS must 
search through the tables, extract the proper values for the new process, and load these values 
into the two internal state registers of the MMU.  The code below details the operation of the 
kernel’s “on_switch” function. 
 

int max_processes = 32; 
array base_table[max_processes]; 
array bound_table[max_processes]; 
 
// This process (and the entire virtual memory 
// system) assumes that new_PID is a valid PID 
// that has been mapped to an actual process.  No 
// guarantees are made for functionality and memory 
// protection if this assumption is not held true. 
 
boolean on_switch([in] new_PID) 
{ 
   new_base <= basetable[new_PID]; 
   new_bound <= boundtable[new_PID]; 
 
   load new_base into the MMU's base register; 
   load new_bound into the MMU's bound register; 
   return true; 
} 
 

Figure 5: Pseudocode for the on_switch function.  Note that the maximum number  
of processes is being fixed to 32 and that the input is assumed to be a valid PID. 
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3.5 Memory Reallocation and Process Destruction 
 In my design, memory allocations and process destructions are among the most 
expensive of operations.  The simplest allocation operation to implement is 
new_protection_domain.  When a new program is loaded onto the mote, the OS needs to check 
that there is enough free space to fit the program into memory.  If there is, the OS can transfer 
the program into main memory and setup its associated variables.  To simplify the check for 
enough free space, the OS maintains an internal variable that points to the end of the allocated 
memory (or, in other words, a pointer to the start of the free space).  This EOM pointer is an 8-
bit variable that is stored somewhere in the data portion of the memory allocated to the OS.  
When a program requests to be uploaded to the mote, the OS subtracts the EOM value from the 
total size of the physical memory, giving the total number of unallocated pages in memory.  If 
there are enough unallocated pages to supply the new program with the amount of memory it 
requests, the OS assigns a unique PID to the new process, updates its base and bound values, and 
updates the EOM pointer.  The pseudocode below outlines the new_protection_domain 
procedure. 
 

// The default state of the EOMpointer is to point to page #8, 
// which is after all the OS code and OS/MMU data. 
int EOMpointer = 8; 
int max_pages = 128; 
 
boolean new_protection_domain([in]int req_size, [in]int PID, 
                              [out]mem_region[] regions) 
{ 
   // calculate the number of pages needed 
   int rounded_size <= req_size rounded up to  
                       the nearest multiple of 256; 
   int rounded_pages <= rounded_size / 256; 
 
   //verify that enough free pages exist to satisfy the request 
   if ((max_pages - EOMpointer) <= rounded_pages) 
      return false; 
 
   // if there is enough free space, allocate it and  
   // update the EOMpointer and the base/bound of the  
   // requesting process 
   base_table[PID] <= EOMpointer; 
   bound_table[PID] <= rounded_pages - 1;     //pages are  
                                                zero-indexed 
   EOMpointer <= EOMpointer + rounded_pages; 
    
   // format the output data -- must convert from  
   // pages to actual bytes 
   regions[0].start = base_table[PID]*256; 
   regions[0].length = rounded_size; 
   return true; 
} 

 
Figure 6: Pseudocode for the new_protection_domain method.  Note the default value of 
the EOMpointer variable and the conversion from page numbers to physical addresses 

when returning a mem_region to the OS.  The process that receives more memory is  
responsible for realizing that it may have received more memory than it asked for. 
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 Though my design performs memory reads and writes very quickly, it uses a lot of 
processor time when it needs to allocate more memory to a process.  When a process calls 
grow_protection_domain, the OS once again uses the EOM pointer to ensure that there is enough 
free space to meet the calling process’ demand.  If there is enough free space, the OS needs to 
undergo intensive memory copying; since memory is allocated in contiguous blocks, a large 
amount of data must be moved to make room for the newly allocated memory.  The OS locates 
all the processes that were allocated memory after the current process.  It then copies them to a 
location that is an appropriate number of pages further down in the memory.  For example, if a 
process requests an additional 768K (3 pages) of memory, all the data that follows that process’ 
data must be moved down three pages in memory.  The pseudocode below details the steps in the 
grow_protection_domain procedure. 
 

boolean grow_protection_domain([in]int PID, [in]int size) 
{ 
   // calculate the number of pages needed 
   int rounded_size <= req_size rounded up to the  
                       nearest multiple of 256; 
   int rounded_pages <= rounded_size / 256; 
 
   // verify that enough free pages exist to satisfy the request 
   if ((max_pages - EOMpointer) <= rounded_pages) 
      return false; 
 
   // int start_marker = base_table[PID] + bound_table[PID] + 1; 
   // int end_marker = EOMpointer - 1; 
 
   --> shift the appropriate segments in memory down by  
       rounded_pages pages.  The section between start_marker  
       and end_marker must be moved to memory locations  
       (start_marker + rounded_pages) to (end_marker +  
       rounded_pages).  To perform this shift without  
       overwriting data, start at the bottom of block and work  
       upwards. 
    
   // update the base_table values and the EOMpointer 
   bound_table[PID] <= bound_table[PID] + rounded_pages; 
   EOMpointer <= EOMpointer + rounded_pages; 
     
   for (p = 0; p < max_processes; p++) 
   { 
      if (base_table[p] > base_table[PID]) 
        base_table[p] <= base_table[p] + rounded_pages; 
   } 
} 

Figure 7: Pseudocode for the grow_protection_domain function. 
 
 One side effect of the dividing memory up into pages is that it becomes nearly impossible 
to provide a program with the exact amount of memory that it requested.  My design rounds all 
allocation requests up to the nearest multiple of 256 bytes and allocates that much to the process.  
(Overallocation is acceptable since it provides the process with at least as much memory as it 
wants.)  As a consequence, my design requires the process to realize that it has been allocated 
more memory than it asked for.  If a process sends a request to grow its virtual address space by 
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one byte, it should realize that it will receive 256 bytes of memory.  Therefore, the process 
should use that overallocated memory instead of sending another grow request to allocate an 
additional one byte of memory.   
 
 The delete_protection_domain works analogously to grow_protection_domain.  When a 
process is deleted from the mote, all the data that followed that process in memory is 
“compacted”, or shifted up, creating one large block of allocated memory instead of two smaller 
separated blocks.  For example, if a process with seven pages of allocated memory is destroyed, 
the OS shifts all the other data in memory up by seven pages, as shown in Figure 8.  The 
pseudocode below details the operation of the delete_protection_domain procedure. 
 

boolean destroy_protection_domain([in]int PID) 
{ 
   int removed_pages <= bound_table[PID] + 1; 
 
 
   // update the base_table values and the EOMpointer 
   EOMpointer <= EOMpointer - removed_pages; 
    
   for (p = 0; p < max_processes; p++) 
   { 
      if (base_table[p] > base_table[PID]) 
        base_table[p] = base_table[p] - removed_pages; 
   } 
} 

Figure 8: Pseudocode for the destroy_protection_domain method.  Note that there is no 
 need to explicitly reset the values stored for the base and bound of the destroyed PID.   

When a new process is given that PID, the old values will be overwritten anyways. 
 
 
3.6 The Kernel/User Bit 
 The virtual memory system also requires some additional protection from user-level 
programs, which my design provides for through the inclusion of a kernel/user bit.  The basic 
operation of the kernel/user bit is similar to other systems: the bit is set to high when the system 
is running in kernel mode and set to low when it is running user-level programs.  The two 
registers that store the base and bound values must be protected from accidental (or malicious) 
overwriting by user-level programs.  Since only the kernel is allowed to write to these registers, 
my design requires the kernel bit to be high when writing to the base and bound registers.  If a 
write is attempted when the kernel bit is set to user mode, a fault should be thrown. 
 

RAM
0

1

/

Kernel/User Bit

MMU

/

Address from
kernel

 
Figure 9: Block diagram of the MMU/Multiplexor setup. 
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  A good design should also allow the kernel to directly access any location in memory 
without having to first be translated by the virtual memory system.  My design allows for this by 
user the kernel/user bit to multiplex the address inputs of the RAM.  When the system is running 
in user mode, the MMU assumes that all address are virtual addresses and translates them into 
physical addresses.  When the system is running in kernel mode, however, the addresses 
outputted by the kernel are treated as physical addresses and passed directly into the RAM.  The 
diagram above shows the multiplexing that occurs.  
 
3.7 Performance Analysis and Assumptions 
 The main benefit of this design is that it enforces modularity with almost no extra cost 
where memory reads and writes are concerned.  When a process issues a call to read from 
memory, the MMU translates the virtual address into a physical address using only a hardware 
adder.  Since this translation is done in a fraction of a clock cycle, no additional CPU time or 
memory accesses are needed to retrieve data from memory.  The tradeoff in this design comes in 
reallocating memory.  Reallocating memory and destroying processes are extremely costly 
operations in this segmented memory system, since a large amount of data must be physically 
copied to a different location in memory.  The exact cost of a reallocation or a destruction is 
dependent on the number of processes and the total amount of allocated memory at the time; in 
the worst case, an destruction could result in the movement of up to 29K of memory, which 
would require 29 thousand memory reads and 29 thousand writes.  The worst case scenario for a 
reallocation is similar, resulting in the movement of 28.75K of data. 
 The design proposed in this paper remains feasible because it is assumed that process 
destructions occur very infrequently.  It stands to reason that processes are only created and 
destroyed when the mote is being programmed.  Therefore, these operations can have inefficient 
implementations, since performance is not an important consideration while the mote is still in 
the lab.  The only remaining operation is memory reallocations.  Since each process is limited to 
4K maximum, they can only request reallocations 12 times.  This results in a weak upper bound 
of 180 total reallocations over the operation life of the mote, using the maximum of 32 processes.  
When compared to the amount of reads and writes that occur, the grow_protection_domain 
method is called very rarely.  In addition, when processes are initially loaded onto the mote, they 
request enough space to hold all their code and data structures.  If programs are written and 
analyzed well, there should be little to no need for dynamic reallocation.  Therefore, it is 
justifiable to place a large burden on reallocations in order to reduce the memory and CPU 
consumption of simple memory reads and writes. 
 
3.8 Specification Changes 
 The design I propose in this paper contains a number of changes to the original hardware 
and software specifications.  Since this design divides the main memory into 256-byte pages, 
memory is always allocated in 256-byte blocks.  Therefore, when a process requests more 
memory, it is allocated memory in units of pages, not bytes.  Each process is responsible for 
knowing that it may receive more memory than it asked for, and it should use this knowledge to 
avoid asking for memory when it has already been allocated enough.  (For example, a process 
should not make a second reallocation requests for 1 byte if it receives 256 bytes from the first 
request.) 
 The memory used in the mote is also byte-addressed with no alignment restrictions, 
which could cause problems in some situations.  For example, if a process issued a request for 
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the last byte in its address space, the memory would also return the first byte of the next address 
space, a violation of the enforced modularity that we seek.  For this reason, I chose to ground the 
lowest address bit of my RAM, forcing the RAM to be word-aligned.  Programs written for use 
on the mote are responsible for knowing that their calls to memory will automatically be word-
aligned. 
  
3.9 Hardware Limitations 
 My design also has a number of limitations that are imposed by the hardware of the 
system.  A few examples include the maximum size of the RAM, the maximum number of pages 
that can be allocated to a process, and the maximum number of processes that can run on the 
mote at any given time.  The first two of these examples are caused by hardware limitations; the 
registers that store the base (VPN) and the bound of a process are limited to 7 and 4 bits, 
respectively.  By adding one more bit to each of these registers (and adding one more bit to each 
value stored in the corresponding software tables), the maximum RAM size and the maximum 
number of pages per process can be doubled.  I chose to limit the capability of the mote to the 
size of the specified hardware because it was never made clear how likely mote hardware 
expansion was.  If hardware expansion is found to be a likely possibility, it would be a simple 
matter to add the extra bits to the bus.  The maximum number of processes is, one the other hand, 
purely a software limitation.  To allow for more processes, one only needs to change the value of 
the max_processes variable.  The main limitation is that the size of the base and bound tables is 
directly proportional to the maximum number of processes; the more processes that can exist, the 
more memory the tables require. 
 
3.10 Other Possible Design Extensions 
 There are a number of ways to improve on the basic design presented in this report.  
These improvements either optimize or add functionality to the existing design, but were not 
incorporated into the original design because it was felt that the added benefits did not justify the 
increased development costs.  One improvement is to lower memory reallocation and destruction 
costs by not compacting memory when processes are destroyed.  This idea breaks the memory 
into separate chunks of contiguous allocated memory that have unallocated space between them, 
meaning that the free space in this design is distributed throughout the RAM and not grouped at 
the end.  When a program requests more memory, the nearest free page is (on average) 
physically closer than it would be in the original design.  Therefore, less data needs to be copied 
to a different location in memory.  This idea is demonstrated in Figure 10 below. 
 

A C D E F G

 
Figure 10: Diagram of memory organization in a non-compacting system.  The arrows 

point out the closest unallocated blocks to the allocated space for process D. 
 
 Using this scheme to organize memory, however, requires a careful redesign of the 
reallocation algorithm.  The algorithm can no longer simply look at the end of the allocated 
memory to find free space.  Instead, the new algorithm needs to start at the boundaries of the 
allocated space of the current process and search outwards until it locates enough free pages to 
fulfill the reallocation demand.  This search pattern ensures that the nearest free pages will be 
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used, meaning that the smallest amount of data needs to be displaced.  If the search algorithm 
reaches the boundaries of the whole memory without locating enough free space, then it returns 
saying that there is not enough space to comply with the request. 
 
4. Feasibility 
 The main design alternative that I considered was the page table-based virtual memory 
system.  A page-table based system uses tables to store the data needed to translate virtual 
addresses into physical addresses.  When more memory is allocated to a process, a new entry is 
added into the page table, and when a process is destroyed, its entries are removed.  The main 
attraction of a page-table based system is that allocation and destruction of processes are very 
simple.  In my design, an allocation requires a large amount of data to be moved to a different 
location in memory.  However, in a page-table based design, allocating new memory is reduced 
to simply adding one more entry into the page table. 
 Despite the apparent advantages of a page-table based design, I chose to go with a 
segmented memory system.  The drawback of a page table design is that it requires two memory 
accesses to read or write to a location in memory.  The virtual memory system needs to access 
the memory once to lookup the physical address, and then it accesses the memory a second time 
to actually retrieve the desired data.  As a result, a page-table based system effectively doubles 
the number of memory accesses that occur.  A TLB cache can be added to speed up memory 
reads and writes, but this makes the virtual memory system unnecessarily complex.  A page-table 
based system also requires much more memory than a segmented memory system.  With the 
page sizes and total memory size outlined in this paper, a page-table based system would require 
well over 512 bytes of memory to hold its page tables, while my base and bound design only 
uses 64 bytes of memory. 
 With the advantages and disadvantages of each system in mind, I decided that a 
segmented memory system would best meet the outlined goals.  A page-table based system 
would offer much more flexibility, but the majority of that flexibility is unnecessary and 
excessive for this particular application.  If it is true that memory reallocation and process 
destruction occurs only very rarely, then a segmented virtual memory system would offer 
significantly better performance with less overhead. 
 
5 Conclusions 
 After considering a variety of design alternatives, I decided that a segmented virtual 
memory system was the best design for use on the mote.  I divided the physical memory into 
pages of 256 bytes each and created an MMU to convert the virtual addresses used by individual 
processes into physical addresses that can be fed into the RAM.  The final design required only 
one memory access to perform a read or write operation, making it significantly more attractive 
than a page-table based design.  Dynamic allocations took a significant amount of processor 
time, but this was not a concern because dynamic allocations were assumed to occur only very 
rarely.  All things considered, the base and bound virtual memory system presented in this paper 
is the simplest and most efficient system that meets all of the required design goals. 
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Appendix A: Block Diagram 
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Figure A-1: A block diagram of all proposed hardware. 


