LFS — Uses of logs

In general, why are logs used? Recall from Chapter 8:

e Stability: as backup copy for primary storage
e Archiving: to maintain complete record of every operation
e Recovery: to go back to a consistent state on crashes

LFS adds:

e Performance: to make write operations sequential, and hence

faster

LFS — Free Space Management

Disk size is not infinite! We need to periodically clean up blocks
that have been deleted, or superseded by new data.

e Divide disk into “segments”

e Periodically perform segment cleaning (stop-and-copy
garbage collection):
— Read a few segments into memory

— Identify live data (data which have not been deleted or
superseded)

— Write live data back to disk in a new place, in fewer

segments

e To speed cleaning, maintain a segment summary block in
each segment, so we can quickly identify the files the segment

contains, and find segment utilization and age

LFS: Log-Structured Filesystem

Motivation:

e RAM is cheap, so most OSes have a large disk cache in RAM
e This large cache absorbs most disk reads

e But disk writes must go through to disk eventually

e Comnsequence: the disk will see mostly writes

LFS exploits the cache-driven shift in read/write ratio by
eliminating seeks on many writes. It writes data in big, consecutive
chunks.

LFS — Overview

Assume (for now) that disk size is infinite. To create a file:
e Write to the end of the log, like a tape
e Write the inode map to the log
e One big sequential write = just one seek.
In contrast, to update a file in Unix FFS:
e Create file data
e Update inode table and parent directory

e Lots of random-access updates = lots of seeks!




LFS — Recovery

e Periodically write a checkpoint which contains:
— Pointers to blocks in the inode map and segment usage table
— Point to the last segment written (end of the log)
— Checkpoint time (last)
Two checkpoint regions on disk. Switch between them to make

checkpointing atomic.

e To recover, read checkpoint and roll forward, i.e., replay any
changes that occurred after the checkpoint. Update inode maps
accordingly

e How to prevent directories from having inconsistent state? Use
directory operation log to replay directory operations

Replication: Challenges

Maintaining consistent replicas is tough! Why?
e Data change over time
e Hard to keep of track who has the “correct” copy of data
e Hard to manage synchronizing between replicas

.. .especially if availability is intermittent (as in Coda) or updates

are transactional (as in databases)

LFS — Cleaning Policies

e When to execute? When only a few tens of segments are free
e How long to execute? Until 50-100 segments are free
e Which segments to clean? Benefit/cost ratio:

free space generated x age of data (1 — u) x age

cost 1+u

e How to group blocks? Sort by age — hope that blocks

written near the same time will be read near the same time

Replication and Consistency

We often have to keep multiple copies of data at different sites

within a system. For example:
e L1 and L2 processor caches: replicating RAM data onchip
e Disk caches: replicating disk data in memory

e Network caches: replicating networked data on the local
machine

e RAID: replicating disk data on other disks
Why?

e Performance. Cheap, big memory and networks are usually

slow, so we use caches
e Reliability. Storage devices can fail

e Connectivity. You can’t always be connected to a network




Other Replication Techniques

e Voting: ask multiple servers, and the most common answer

wins

e Backup: keep an extra copy to be swapped in if the original
copy becomes unavailable

e Incremental backup: only back up changes, not the whole
data set.

10

Coda — Design Overview

e Use callbacks for cache coherence

e Hoard critical data to improve disconnected operation (cf.
typical caching, based entirely on previous access pattern)

e On reconnection, synchronize state with server, notifying user

if there is a consistency problem
Key principles:

e Keep functionality on clients, not servers. Similar in spirit to
NFS’s stateless approach, although we need some state on the
server to handle callbacks

e Optimistic replica control

Ways to Provide Replication

12

¢ Replicated state machines: every server receives the same
inputs and handles the inputs in the same way. This is tough

because:

— Inputs must be exactly the same, and in exactly the same

order
— Data replicas can drift apart
— State machines need to be absolutely identical
e Single state machine: a master server periodically sends a

copy of the entire data set to every slave

sends changed data)

— Often: partition the database into small regions (e.g., files,

tables, or rows) which can be updated independently

— Assign different masters for different partitions

Coda

Motivation:

Typical network filesystems like NFS and AFS (we use the
latter at MIT) don’t handle the case where a remote server
has failed or is unavailable.

Coda uses caching (replication) to improve availability,
and, in particular, to support disconnected operation.

11




Coda — Optimistic vs. Pessimistic Replica Control

e Pessimistic: Before changing a file, make sure every other

client knows that you're writing it
— Advantage: prevents conflicts
e Optimistic: Let anyone write anytime, and try to resolve
conflicts when they occur
— Advantage: can write even when disconnected

Coda uses optimistic replica control, since allowing disconnected

operation is an important goal.

Coda — Hoarding

Which files should be hoarded on the local machine?
e Any file currently or recently in use (dynamic priorities)
e The hoard profile contains a list of files to hoard, and their
priorities

e When connected, do a hoard walk every 10 minutes to
re-establish equlibrium by replacing low-priority files with

higher-priority ones from the server

14

Coda — Caching and Callbacks

Coda uses callbacks to maintain cache coherence.

e Client loads whole file into local cache on open (if it’s not there

already)
e Client keeps server informed as to which files are in its cache

e Server contract: “I will tell you immediately when your copy of

a file is no longer valid, i.e., on callback break”

16
Coda — States
Hoarding
disconnection logical reconnection
Emulation Reintegration
physical

reconnection

e Hoarding: The usual “connected” state. Maintains the cache,
trying to keep files in the hoard profile cached

e Emulating: The usual “disconnected” state. Serves files from
the cache, does security checks locally, and logs changes for

reintegration

e Reintegration: Synchronizes with the server, bailing out if

there are any conflicts.

13

15




Coda — Reintegration

What does the client do on reconnection?

e Lock all changed files on server; replay changes; unlock changed

files

e If someone else has modified the file (the storeid has changed
on the server since when the client originally read it), abort the
entire reintegration and write out a tar file containing the

whole log

e Handle directories specially — don’t abort when a directory-file
conflict occurs, just merge changes. We can do this since we

know directory-file semantics

17




