

L M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE•

MASSACHUSETTS •

IN
STITUTE OF TECHNOLO

G
Y

6.033—Computer System Engineering May 15, 2002

General Design Principles

Robustness principle

be tolerant of inputs, strict on outputs

End-to-end argument

the application knows best

Open design principle

you need all the help you can get

Incommensurate scaling rule

changing a parameter by a factor of ten usually requires a new design

Design for iteration

you won't get it right the first time

Principle of diminishing returns

to increase utilization requires effort that is out of proportion

Escalating complexity principle

adding function adds complexity that is out of proportion

Adopt sweeping simplifications

pair-and-compare
separate authentication from confidentiality
best-effort network
stateless protocols
each variable has only one author
optimize just the common case
don't overwrite, create a new version instead

Stay back from the edge of the cliff

and monitor how far away it is

Beware of excessive generality

if it is good for everything it is good for nothing (Hammer's law)

May 15, 2002

Page 2

Saltzer, 5/12/2002, slide 1

Complexity Revisited

6.033 Lecture 26

May 15, 2002

Lecturer: Jerry Saltzer

Saltzer@mit.edu

http://mit.edu/Saltzer

Saltzer, 5/12/2002, slide 2

Coping with Complexity

• Sources

• Learning from failure
 (and success)

• Fighting back

• Admonition

Saltzer, 5/12/2002, slide 3

Too many objectives

AvalabilityScalability
Security

Shared Data

Maintainability

Performance

M
ob

ilit
y

Flexibility

Scalability

Decent
ra

liz
atio

n

Our
System

Ea
se

 o
f

U
se

Not enough systematic
methods

Saltzer, 5/12/2002, slide 4

Many objectives

+

Few methods

+

High d(technology)/dt

=

Very high risk

The Tar Pit

Saltzer, 5/12/2002, slide 5

No hard–edged barrier—

 it just gets worse…

increasing function

subjective
complexity

Saltzer, 5/12/2002, slide 6

Learn from failure

Pharaoh Sneferu’s first try

Meidum pyramid

The outer layers collapsed

Saltzer, 5/12/2002, slide 7

Learn from failure

Pharaoh Sneferu’s second try

Dashum (bent) pyramid

The plan changed midway, but
interior chambers still collapsed.

Saltzer, 5/12/2002, slide 8

Learn from failure

Pharaoh Sneferu’s third try

Red pyramid

Success

Saltzer, 5/12/2002, slide 9

Learn from failure

Complex systems fail for

 complex reasons

 Find the cause…

 Find a second cause…

 Keep looking…

 Find the mind–set.

(see Petroski,

Design Paradigms

)

Saltzer, 5/12/2002, slide 10

NYC: 2,963 traffic lights

Univac, based on
experience in Baltimore
and Toronto with 100 lights

started: 1965
scrapped: 1968
spent: $5.4M

• two years behind schedule
• changing specifications
• second-system effect:
 • new, untried sensors
 • new, untried software
 • new, untried algorithms
• incommensurate scaling at 30X

Saltzer, 5/12/2002, slide 11

California Department of
Motor Vehicles

Vehicle registration,
driver’s licenses

started: 1987
scrapped: 1994
spent: $44M

• Underestimated cost by factor of 3
• Slower than 1965 system
• Governor fired the whistleblower
• DMV blames Tandem
• Tandem blames DMV

Saltzer, 5/12/2002, slide 12

United Airlines/Univac

Automated reservations,
ticketing, flight
scheduling, fuel delivery,
kitchens, and general
administration

started: 1966, target 1968
scrapped: 1970
spent: $50M

• Second system: tried to automate
everything, including the kitchen sink
• “Enhancement” concurrent with
 “stabilization”

(repeat: Burroughs/TWA)

Saltzer, 5/12/2002, slide 13

CONFIRM

Hilton, Marriott, Budget,
American Airlines

Hotel reservations linked
with airline and car rental

started: 1988
scrapped: 1992
spent: $125M

• Second system
• Very dull tools (machine language)
• Bad-news diode
• See CACM October 1994, for details

Saltzer, 5/12/2002, slide 14

Advanced Logistics
System

U.S. Air Force
materiel and transport
tracking

started: 1968
scrapped: 1975
spent: $250M

• Second system effect
• Estimated $480M more needed to
 complete the system

Saltzer, 5/12/2002, slide 15

SACSS(California)
Statewide Automated
Child–Support System

Started: 1991 ($99M)
 “on hold”: Sept. 1997
cost: $300M

• “Lockheed and HWDC disagree on
what the system contains and which
part of it isn't working.”

• “Departments should not deploy a
system to additional users if it is not
working. “

•”...should be broken into smaller, more
easily managed projects...”

Saltzer, 5/12/2002, slide 16

Taurus

British Stock Exchange
share settlement system

started: 1990
scrapped: 1993
spent: £400M = $600M

• “Massive complexity of the back-end
 systems…”
• All–or–nothing approach, nothing to
 show until everything works
• Shifting requirements
• Responsibility disconnected from
 control
• Bad–news diode in action
• Thorough report in Drummond,

 Escalation in Decision–Making

 (1996)

Saltzer, 5/12/2002, slide 17

IBM Workplace OS for PPC

Mach 3.0 + binary
compatibility with AIX,
DOS, MacOS, OS/400 +
new clock mgt + new
RPC + new I/O + new CPU

started: 1991
scrapped: 1996
spent: $2B (est.)

• 400 staff on kernel, 1500 elsewhere
• “Sheer complexity of the class

structure proved to be overwhelming”
• Big–endian/little–endian not solved
• Inflexibility of frozen class structure
• report in Fleisch, HOT-OS 1997

Saltzer, 5/12/2002, slide 18

Tax systems
modernization plan

U.S. Internal Revenue
Service, to replace 27
aging systems

started: 1989 (est.: $7B)
scrapped: 1997
spent: $4B

• All–or–nothing massive upgrade
• Systems “do not work in real world”
• Government procurement regulations

Saltzer, 5/12/2002, slide 19

Advanced Automation
System

U.S. Federal Aviation
Administration

Replaces 1972 Air Route
Traffic Control System

started: 1982
scrapped: 1994
spent: $6B

• Changing specifications
• Grandiose expectations
• Congressional meddling

Saltzer, 5/12/2002, slide 20

London Ambulance
Service

Ambulance dispatching

started: 1991
scrapped: 1992
cost: 20 lives lost in 2 days

of operation, $2.5M

• Unrealistic schedule (5 months)
• Overambitious objectives
• Unidentifiable project manager
• Low bidder had no experience
• Backup system not checked out
• No testing/overlap with old system
• Users not consulted during design

Saltzer, 5/12/2002, slide 21

“

Success

”

20

%

“Impaired”

30

%

“Challenged”

50

%

On time
On budget
On function

Scrapped

Over budget
Over schedule
Missing function

2

x

 planned budget
2

x

 planned time
2/3 of planned function

1995 Standish Group study

on average:

Saltzer, 5/12/2002, slide 22

Recurring problems

- Incommensurate scaling

- Second–system effect

- Mythical man-month

- Bad ideas get included

- Wrong modularity

- Bad-news diode

Saltzer, 5/12/2002, slide 23

Why aren’t abstraction,
modularity, hierarchy, and
layers enough?

• First, you must understand
what you are doing.

• It is easy to create abstrac-
tions; it is hard to discover the

right

 abstraction.

• It is hard to change the
abstractions later.

(ditto for modularity, hierarchy,
and layers)

Saltzer, 5/12/2002, slide 24

Fighting back: Use

 sweeping simplifications

Some modular boundaries
 work better than others

By chapter…

1: Processors, memory,
 communication links
2: Dedicated servers
3:

N

–level memories,

N

 = 2
4: Best–effort network
5: Delegate administration
6: Signing

and

 sealing
7: Fail–fast, pair–and–compare
8: Avoid overwriting data

Saltzer, 5/12/2002, slide 25

Fighting Back:
 Control Novelty

Sources of excessive novelty…

- Second–system effect
- Technology is better
- Idea worked in isolation
- Marketing pressure

Some

 novelty is necessary; the
hard part is figuring out when
to say

No

.

Saltzer, 5/12/2002, slide 26

Fighting back: Feedback

Design for Iteration,
 Iterate the Design

• Something simple working
soon

• One new problem at a time

• Find ways to find flaws early

• Use iteration-friendly design

• Bypass the bad-news diode

• General: Learn from failure

Saltzer, 5/12/2002, slide 27

Brooks’s version:

 Rationalism

vs
Empiricism

plan
build prototype

specify
discover problems

design
repeat till OK

build
ship.

ship

(stolen from Brooks, 1993)

Saltzer, 5/12/2002, slide 28

Fighting back:
 Find bad ideas fast

• Examine the requirements

 “and ferry itself across the Atlantic”
 (LHX light attack helicopter)

• Try ideas out—but don’t
 hesitate to scrap them

• Understand the design loop

Requires strong, knowledgeable
 management

Saltzer, 5/12/2002, slide 29

The
 d

e
sig

n Lo
o

p

 in
itia

l d
ra

ft c
o

d
in

g
 c

h
e

c
ko

u
t p

ro
d

u
c

tio
n

 d
e

sig
n

 d
o

c
s

m
o

n
th

s
se

c
o

n
d

s
m

in
u

te
s

h
o

u
rs

d
a

ys

Saltzer, 5/12/2002, slide 30

Fighting back:
 Find flaws fast

• Plan, plan, plan

• Simulate, simulate, simulate

• Design reviews, coding
 reviews, regression tests,
 performance measurements

• Design the feedback system
 e.g., alpha test + beta test,
 no–penalty reports,
 incentives &
 reinforcement

Saltzer, 5/12/2002, slide 31

Use iteration–friendly
 design methods

• Authentication logic (Ch 6)

• Alibis (space shuttle)

• Failure tolerance models
 (Ch 7)

General method:

— document all assumptions
— provide feedback paths
— when feedback arrives,

review assumptions

Saltzer, 5/12/2002, slide 32

Fighting back:
 Conceptual integrity

• One mind controls the
 design

 — Reims cathedral
 — Macintosh
 — Visicalc
 — Linux
 — X Window System

• Good esthetics yields
 more successful systems

 — Parsimony
 — Orthogonality
 — Elegance

Saltzer, 5/12/2002, slide 33

Obstacles

• Hard to find the right
modularity

• Tension: need the best
designers—but they are the
hardest to manage

•

The Mythical Man–Month

(Brooks): Adding more
people to a late project
makes it later.

Saltzer, 5/12/2002, slide 34

Fighting back: Summary

• Use sweeping simplifications

• Control novelty

• Install feedback

• Find bad ideas fast

• Use iteration–friendly design
 methods

• Conceptual integrity

Saltzer, 5/12/2002, slide 35

A
d

m
o

nitio
n

M
a

ke
 su

re
 th

a
t n

o
n

e
 o

f th
e

syste
m

s

you

 d
e

sig
n

 c
a

n
 b

e

u
se

d
 a

s d
isa

ste
r e

xa
m

p
le

s in

fu
tu

re
 ve

rsio
n

s o
f th

is ta
lk.

Saltzer, 5/12/2002, slide 36

6.033 T
hem

e song

'

T
is the gift to be sim

ple, 'tis the gift to be free,

'T
is the gift to com

e dow
n w

here w
e ought to be;

A
nd w

hen w
e find ourselves in the place just right,

'Tw
ill be in the valley of love and delight.

W
hen true sim

plicity is gained

To bow
 and to bend w

e shan't be asham
ed;

To turn, turn w
ill be our delight,

T
ill by turning, turning w

e com
e out right.

 —

Sim
ple G

ifts,

 traditional Shaker hym
n

