
Reflections on Trusting Trust

Ken Thompson



Motivation

• It is very difficult to determine whether or not you
can completely trust the software you use.



How it Works

• Start with the unmodified C compiler and its
source code

• Modify the source code of the compiler so that it
will insert a backdoor into the program of your
choice (e.g. ”login”) whenever the program is
compiled.

• Also modify the compiler source code so that it
will insert self-replicating code into the compiler;
the self-replicating code inserts itself and the
trojan horse above into the compiler whenever the
compiler is compiled.



How it Works, cont’d

• Compile the original source for the C compiler,
and install the resulting executable binary as the
computer’s official C compiler.

• Replace the modified compiler source code with
the original source code.

• Now, whenever someone recompiles the compiler,
it will contain the trojan horses without any traces
in the source code.



Lessons

• You can’t trust that programs you compile are free
of trojan horses even if you examine the source
code, because the compiler may be modifying
them undetected.

• Looking at the compiler code doesn’t reveal this
either, because the trojan horse code is only in the
binary.



Questions

• What if you write your own compiler in assembly
language? Are you safe then?

• Can you really trust any of your software tools?

• What about your hardware? Can you trust that?
Do you need to?



How Cryptosystems Fail

Ross Anderson



Motivation

• Crypto systems are hard to build, and
understanding how and why they fail will make it
easier to build better ones.



Curtain of Silence

• Information on crypto failures is hard to come by,
because governments are the heaviest users and
they keep it all secret.

• Even in other uses (e.g. banking), it may be to
someone’s advantage to suppress the fact that a
failure has occurred.

• Consequently, there is a shortage of information
on failures in crypto systems.



Lessons from ATM industry

• Cryptosystems fail in ways that are quite different
from those that the designers originally considered

- Dishonest individuals (trusting the wrong people)

- Management issues

- Implementation errors



Lessons from ATM industry, cont’d

• Quality control is of utmost importance; a good
design is useless if the implementation causes
incorrect behavior

• Certifying that a particular system component (e.g.
IBM ”security module”) is secure does not
guarantee that the entire system is secure



How should we approach secure systems?

• Concentrate on what is LIKELY to go wrong, not
just on what CAN go wrong.

• Design secure systems similar to safety-critical
systems



Design paradigm

• Enumerate ALL failure modes, not just the
“tricky” ones.

• List clearly what strategy is being adopted to
prevent each failure mode.

• Explain how each strategy is implemented,
including how failures of other system
components are handled.

• Test whether all components, and the system as a
whole, can be operated by the actual users (as
opposed to the designers).



Questions

• How does the ”curtain of silence” benefit the
people designing secure systems? How could it
hurt them?

• How do the laws regarding liability in the U.S. vs.
the U.K. help encourage or discourage good
security practices by corporations?


