Reflections on Trusting Trust

Ken Thompson




Motivation

o It is very difficult to determine whether or not you

can completely trust the software you use.




How it Works

e Start with the unmodified C compiler and its
source code

Modify the source code of the compiler so that it
will insert a backdoor into the program of your
choice (e.g. “login”) whenever the program is
compiled.

Also modify the compiler source code so that it
will insert self-replicating code into the compiler;
the self-replicating code inserts itself and the

trojan horse above into the compiler whenever the

compiler is compiled.




How it Works, cont’d

e Compile the original source for the C compiler,
and install the resulting executable binary as the
computer’s official C compiler.

e Replace the modified compiler source code with
the original source code.

e Now, whenever someone recompiles the compiler,
it will contain the trojan horses without any traces
in the source code.




Lessons

e You can’t trust that programs you compile are free
of trojan horses even if you examine the source
code, because the compiler may be modifying
them undetected.

e Looking at the compiler code doesn’t reveal this

either, because the trojan horse code is only in the
binary.




Questions

e What if you write your own compiler in assembly
language? Are you safe then?

e Can you really trust any of your software tools?

e What about your hardware? Can you trust that?
Do you need to?




How Cryptosystems Fail

Ross Anderson




Motivation

e Crypto systems are hard to build, and

understanding how and why they fail will make it

easier to build better ones.




Curtain of Silence

e Information on crypto failures is hard to come by,
because governments are the heaviest users and
they keep it all secret.

e Even in other uses (e.g. banking), it may be to

someone’s advantage to suppress the fact that a
failure has occurred.

e Consequently, there is a shortage of information
on failures in crypto systems.




Lessons from ATM industry

o Cryptosystems fail in ways that are quite different
from those that the designers originally considered
- Dishonest individuals (trusting the wrong people)
- Management issues

- Implementation errors




Lessons from ATM industry, cont’d

e Quality control is of utmost importance; a good
design is useless if the implementation causes
incorrect behavior

o Certifying that a particular system component (e.g.
IBM ”“security module”) is secure does not
guarantee that the entire system is secure




How should we approach secure systems?

e Concentrate on what is LIKELY to go wrong, not
just on what CAN go wrong.

e Design secure systems similar to safety-critical
systems




Design paradigm

e Enumerate ALL failure modes, not just the
“tricky” ones.

List clearly what strategy is being adopted to
prevent each failure mode.

Explain how each strategy is implemented,
including how failures of other system
components are handled.

Test whether all components, and the system as a
whole, can be operated by the actual users (as
opposed to the designers).




Questions

e How does the "curtain of silence” benefit the
people designing secure systems? How could it
hurt them?

e How do the laws regarding liability in the U.S. vs.
the U.K. help encourage or discourage good
security practices by corporations?




