NFS: Sun’s Network File System
Goals:

e Machine and OS independence
Crash recovery
Transparent access

UNIX semantics maintained on client

Reasonable performance




NFS — transparency

e Remote filesystems need to look exactly like any other
filesystem

e But the existing kernel only supported one filesystem

e Solution: A new layer of indirection (vnodes). Each filesystem
provides its own implementation of the vnode interface (open,

close, rename, etc.)




NFS — crash recovery
NF'S is stateless.

e Every NFS command is self-contained — no session

information necessary

No open — just lookup to obtain an fhandle

No close — just stop talking to server!

If a server crashes, the client just repeats request until the

server comes back up and answers

If a client crashes, server doesn’t care




NFS — crash recovery (cont’d)
NFS is idempotent.

e Issuing the same request more than once has no extra effect

e Duplicate requests are no problem — read or write the same
thing twice, and nothing will be different




If NFS were stateful

e Server would maintain state for each client (which files are

open, where client is in each file, etc.)

Client would have to detect server crashes to rebuild server’s

state

Server would have to detect client crashes to discard client’s

state

Would make crash recovery much harder!




NATs — network address translators

e There are roughly 232 IP addresses

e But many go unused due to partitioning scheme (MIT has
224 22 16.7 million IP addresses!)

IPv6 supports 2128 IP addresses but requires changes to
infrastructure and end-hosts

NATs: a stop-gap (maybe permanent?) solution requiring no
changes to routers or hosts




How NATSs work

e Each host in an organization’s subnet gets a “fake,” not
necessarily globally unique, IP address (10.z.z.z, 192.168.z.x,
172.16-31.2.7)

e Border router gets a set of real IP addresses (let’s say

18.18.18.1)

e Border router intercepts packets to Internet, changing source
address to one of its IPs (18.18.18.3)

e Border router intercepts packets from Internet, changing
destination address to the appropriate internal IP




How NATs work, cont’d

Which internal IP is the real destination? Border router must keep

a table remembering the appropriate internal IP for each

connection.

External IP

Internal IP

18.18.18.1

192.168.0.100

18.18.18.2

192.168.4.34

18.18.18.3

192.168.1.205

What if the NAT doesn’t have enough IP addresses for all the

internal users (e.g., more than 256 can be online at once)? Use port

numbers too




What NATSs break

e Protocols with IP addresses in data, e.g., FTP — each host
knows only its fake IP addresses

e Servers inside a NAT

e New protocols — NATSs may need to know about them

e Plenty of other stuff (see paper)




Google

e Precision: relevance of returned information

e Recall: breadth of returned information

e Recall is easy enough by brute force. Precision is tough!
e Google utilizes the link structure of the Web to gauge the

relevance of each page (PageRank)

— If lots of people link to a page, it’s probably an important
page
— Links from important pages are probably important

— PageRanks are eigenvalues of normalized link matrix




Google — miscellany

e Factors Google uses to improve precision:
— Proximity
— Anchor text
— Text colors, fonts, sizes

e Results for multi-word query: intersection of results for

individual search terms, with proximity taken into account

e Google is highly parallel — 8,000 PCs, each with two
80-gigabyte disks (1,280 terabytes!)




