
The UNIX Time-Sharing System

Motivation

• Mostly the the convenience of the authors
(programmers).

• Interactive computing vs. batch



Features

• General-purpose, multi-user, interactive operating
system.

• Hierarchical FS; compatible file, device, and
inter-process I/O

• Asynchronous processes

• Inexpensive equipment



File System

• Ordinary files vs. directories

• Protection (permissions, SUID bit)

• I/O (file descriptors, open(), read(), write())

• Implementation (inodes)

• How is hierarchy used?



Processes

• Forking, pipes for IPC

• Inheritance of attributes from parents



Shell

• What is it?

• Standard in/out, pipes, file redirection

• Multitasking

• Initialization: what happens when you log in?



Flash: An efficient and portable Web server

Motivation

• Serve web pages as fast as possible (i.e. maximize
utilization of available hardware resources.)



Background

• Basic functions a web server performs



Architectures

• MP, MT, SPED, AMPED (how are they
same/different?)

• AMPED mechanics (how do the helpers work?)



SPED vs. AMPED

• What kind of workload is each better at?

• How would the relative performance of SPED and
AMPED change if all operating systems supported
asynchronous disk I/O ?



Other considerations

• Other Flash optimizations (basics)

• Dynamic content – is there any difference between
SPED and AMPED here?

• How many AMPED helpers are likely to be
useful?



Eliminating Receive Livelock in an
Interrupt-driven Kernel

Motivation

• Interrupts don’t work well (or at all) under high
network load.

• Example apps: routing, network servers



Polling vs. Interrupts

• What is polling? What is an interrupt?

• What is congestive collapse/receive livelock?
- Why was this not a problem originally?



MLFRR (Maximum Loss Free Receive Rate)

• What is it?

• What do we want to have happen when we reach
it?



Solution

• What is good about interrupts? Bad?

• What is good about polling? Bad?

• What is the authors’ final solution?



Ethernet: Distributed Packet Switching for
Local Computer Networks

Motivation

• Cheap, reliable, scalable communication among
multiple local area computers



Design issues

• Topology: Decentralization for reliability
- Shared medium, decentralized control

- Advantages/disadvantages of this? How can it fail?

• Coding
- Manchester coding: What is it? What problems does it

solve?



Design issues

• (some) Mechanisms for decreasing loss
- Carrier detection

- Interference detection (collision detection)

- Packet error detection

- Collision consensus enforcement

• What is exponential backoff, and what problem
does it solve?



Design issues

• Growth issues
- Signal cover, traffic cover, address cover

- What is the solution for each?

• What is exponential backoff, and what problem
does it solve?



Terminology

• Packet, Broadcast, Slot, Collision, Carrier Sense,
Exponential backoff

• Tap, Transceiver, Interface – what’s the difference?

• Statistical Arbitration



Questions

• What is the packet format? How is addressing
done? What is the CRC for?

• What other network topologies are there? How can
they fail?

• Does Ethernet guarantee that packets will get
delivered?

• Why is there a minimum packet size? How do you
calculate it? (was NOT in the paper, but good to
understand).


