
MIT

6.031 Software Construction

Prof. Rob Miller and Max Goldman

6.031 Spring 2022 Quiz 2
You have 50 minutes to complete this quiz.
There are 5 problems, each worth approximately an equal share of points.

The quiz is closed-book and closed-notes, but you are allowed one two-sided page of notes on paper, and you may use blank

scratch paper.
You may not open or use anything else on your computer: no 6.031 website or readings; no VS Code,

TypeScript compiler, or programming tools; no web search or discussion with other people.

Before you begin: you must check in by having the course staff scan the QR code at the top of the page.

To leave the quiz early: click the done button at the very bottom of the page and show your screen with the check-out code to

a staff member.

This page automatically saves your answers as you work.
If you see a stuck yellow spinner, red exclamation mark, or a red

notification that you are disconnected, your answers are not being saved: try reloading the page right away, before

continuing to work on the quiz.

Good luck!

The questions on this quiz use the code at the bottom of this page.
You can open this introduction and the provided code in

a separate tab.

In the provided code at the bottom, the type DNA represents a strand of DNA, which is a string of bases, where a base is

represented by one of the letters A, C, G, or T.

One kind of DNA strand is a gene, which encodes the description of a protein.
Genes can also occur as substrings in other

DNA strands.

The provided type Crispr represents a gene-editing process.
The process starts with precursors, with are premade DNA

strands bought from a supplier.
A typical step of a gene-editing process is a gene splice, which replaces a gene in a DNA

strand with another gene.

A Crispr process can be simulated entirely in software. The result of simulation is a DNA value in memory.

A Crispr process can also be fabricated in the real world using a Lab, which programmatically controls a gene-editing

machine with Tube elements in which gene-editing reactions occur. The result of fabrication is a Tube containing real DNA.

Note that this is an oversimplification of biology, gene-editing, and CRISPR technology.

Problem 1.

Write the data type definition for the provided Crispr type.

The government requires that gene-editing processes should never intentionally or accidentally produce DNA containing a

dangerous substring (one that might, for example, be a dangerous virus). This requirement must be enforced not just on all

precursors and final product of the process, but for intermediate products as well (the result of each completed gene-

splicing step).

Alyssa Hacker recommends providing an operation everOccurs that takes a DNA strand and returns true if and only if the

strand ever occurs as a substring of any DNA strand used or produced during the process.

Specify and implement everOccurs as an instance method of Crispr.

interface Crispr {

 ...

}

class Precursor implements Crispr {

 ...

}

class Splice implements Crispr {

 ...

}

Refactor your implementation of Splice.everOccurs() from the previous answer so that it does as much work as possible

using the array [this.target, this.oldGene, this.newGene] with one or more operations like map, filter, reduce,

every, some. (You may repeat the previous answer unchanged if it already met this requirement.)

class Splice implements Crispr {

 ...

}

Problem 2.

Implement fabricate() for Precursor.

class Precursor implements Crispr {

 ...

 public async fabricate(lab: Lab): Promise<Tube> {

 }

}

Implement fabricate() for Splice, using as much concurrency as you can.

class Splice implements Crispr {

 ...

 public async fabricate(lab: Lab): Promise<Tube> {

 }

}

Problem 3.

Ben Bitdiddle is working on the Lab implementation, as shown in the provided code.

Its get operation can be costly in both time and money, requiring a human to load the tube with premade DNA bought from

another company.

But a tube of DNA can be reused any number of times, since gene-editing requires only a tiny amount of DNA, and the

process regenerates the amount that was used.

So Ben has implemented Lab.get() as shown in the provided code, using the tubeMap field to keep track of and reuse tubes

if possible.

(Ben has also modified Lab.splice() so that its target tube is removed from tubeMap, because its contents will be mutated

by the gene-splicing operation. This code is not shown.)

Write a rep invariant for tubeMap which would achieve Ben’s goal of reusing tubes as much as possible.

Suppose that:

two different gene-editing processes A and B are running asynchronously using the same Lab

A and B both call lab.get(dnaX) for the same precursor dnaX

no other asynchronous processes are using lab

For each of the following interleavings, referring to the line numbers 1-7 in get() in the provided code, decide whether the

interleaving is impossible, leads to a race condition or deadlock, or runs safely; then explain your answer in one sentence.

A runs lines 1, 4, 5, 6, 7, then B runs lines 1, 4, 5, 6, 7.

Why?

A runs lines 1, 4, 5, 6a; then B runs lines 1, 4, 5, 6a; then A finishes lines 6b and 7, then B finishes lines 6b and 7.

Why?

A runs lines 1 and 4, then B runs lines 1 and 4, then A runs lines 5, 6, 7, then B runs lines 5, 6, 7.

Why?

A runs lines 1, 4, 5, 6a, then B runs lines 1, 2, 3, then A finishes lines 6b and 7.

Why?

impossible

race condition

deadlock

safe

impossible

race condition

deadlock

safe

impossible

race condition

deadlock

safe

impossible

race condition

deadlock

safe

Problem 4.

Louis is working on the simulation part of the gene-editing process. He pushes a git commit that adds a new method to the

DNA type (a type that already exists and has many clients throughout the system).
The lines marked + are Louis’s commit:

class DNA {

 ... // existing code of DNA omitted

+ public replace(oldGene: string, newGene: string): void {

+ this.bases = this.bases.replaceAll(oldGene, newGene);

+ this.checkRep();

+ }

}

What kind of ADT operation is replace()?

As one of Louis’s teammates, you are assigned to code-review Louis’s git commit.

First state two different things that are missing from Louis’s commit – that Louis should have committed but didn’t. Put one in

each box below.

Now critique Louis’s method signature in two different ways, using the two boxes below, one sentence in each box.

Problem 5.

Write a regular expression describing a nonempty strand of DNA.

Write a regular expression describing a strand of DNA containing the triple CAG somewhere, and also containing the triple

TCG somewhere.

A chromosome is a nonempty sequence of genes, where each gene is a nonempty sequence of codons followed by a terminator

TTT, where each codon is a triple of bases that does not begin with T. Write a grammar expressing these relationships, with a

nonterminal named for, and correctly defining, each italicized word.

You can open the code below in a separate tab.

/**

 * Immutable type representing a strand of DNA.

 */

class DNA {

 /** omitted */

 public constructor(bases: string) {

 // omitted

 }

 /**

 * @returns zero-based index of first occurence of `dna` as a substring of this strand,

 * or undefined if `dna` never occurs.

 */

 public find(dna: DNA): number|undefined {

 // omitted

 }

 /**

 * @returns true iff this and that are observationally equivalent

 */

 public equalValue(that: DNA): boolean {

 // omitted

 }

 // other code omitted

}

/**

 * Immutable type representing a gene-editing process.

 */

interface Crispr {

 /**

 * Simulates this gene-editing process entirely in software, without using chemicals or a lab.

 * @returns DNA strand that would result from this process

 */

 simulate(): DNA;

 /**

 * Run this gene-editing process using the given `lab`.

 * @returns the tube of `lab` in which the final DNA from this process

 * can be found.

 */

 async fabricate(lab: Lab): Promise<Tube>;

 // other code omitted

}

/**

 * Represents an already-existing DNA strand (a "precursor") in a gene-editing

 * process. Precursors are bought premade from a supplier.

 */

class Precursor implements Crispr {

 /**

 * Make a gene-splicing step that results in the given `dna` strand.

 */

 public constructor(private readonly dna: DNA) {

 }

 // other code omitted

}

/**

 * Represents a gene-splicing step in a gene-editing process,

 * which replaces all instances of one gene with another.

 */

class Splice implements Crispr {

 /**

 * Make a gene-splicing step that finds all occurrences of

 * oldGene in target and substitutes newGene in place of each one.

 */

 public constructor(

 private readonly target: Crispr,

 private readonly oldGene: Crispr,

 private readonly newGene: Crispr

) {

 }

 // other code omitted

}

/**

 * Mutable type controlling an automated gene-editing machine.

 */

class Lab {

 /**

 * Modifies the DNA in targetTube to replace all occurrences of the DNA from oldGeneTube with the

 * DNA from newGeneTube.

 * @returns a promise that fulfills with the same tube as targetTube, after the process is complet

 */

 public async splice(targetTube: Tube, oldGeneTube: Tube, newGeneTube: Tube): Promise<Tube> {

 // omitted

 }

 private tubeMap: Map<Tube, DNA> = new Map();

 /**

 * @returns a tube containing DNA strands corresponding to `dna`

 */

 public async get(dna: DNA): Promise<Tube> {

1 for (const tube of this.tubeMap.keys()) {

2 if (this.tubeMap.get(tube).equalValue(dna)) {

3 return tube;

 }

 }

4 const tube = new Tube();

5 this.tubeMap.set(tube, dna);

6a/b await this.load(tube, dna); // "line 6a" is the load() call, "line 6b" is the await

7 return tube;

 }

 /**

 * Ask a human to order premade DNA from a supplier

 * and load it into the tube.

 * @returns a promise that fulfills once this tube contains `dna`.

 */

 private async load(tube: Tube, dna: DNA): Promise<void> {

 // omitted

 }

 // other code omitted

}

/**

 * Mutable type representing a test tube containing DNA.

 */

class Tube {

 /** Make a new Tube. */

 public constructor() {

 }

 // other code omitted

}

