MIT
6.031 Software Construction
Prof. Rob Miller and Max Goldman

6.031 Spring 2022 Quiz 1

You have 50 minutes to complete this quiz. There are 5 problems, each worth approximately an equal share of points.

The quiz is closed-book and closed-notes, but you are allowed one two-sided page of notes on paper, and you may use blank
scratch paper. You may not open or use anything else on your computer: no 6.031 website or readings; no VS Code,
TypeScript compiler, or programming tools; no web search or discussion with other people.

Before you begin: you must check in by having the course staff scan the QR code at the top of the page.

To leave the quiz early: click the done button at the very bottom of the page and show your screen with the check-out code to
a staff member.

This page automatically saves your answers as you work. If you see a stuck yellow spinner, red exclamation mark, or a red
notification that you are disconnected, your answers are not being saved: try reloading the page right away, before
continuing to work on the quiz.

Good luck!

The questions on this quiz use the code at the bottom of this page. You can open this introduction and the provided code in
a separate tab.

Battery magnate Elron Tusk has decided to donate a scooter-sharing system to the town of Riverdale. Unfortunately, Tusk
only wants to donate tiny batteries, so the scooters will use docking stations to charge, and they will only be able to scoot to
nearby charging stations before they run out of juice. Here’s a map showing which stations are reachable from one another:

Riverdale
North
/ \
West — Mammoth — Central — East
\ Hill \ /
N/ Waterwheel
South

Despite its name, Riverdale’s Mammoth Hill is not very tall, and the whole town is quite flat. Therefore, scooting range is just
a function of distance, and all the connections are bidirectional. Mathematically speaking, the system is an undirected graph
of docking stations with no self-loops: if and only if you can scoot from station A to station B, then you can scoot from B to A.
Stations are never considered to be connected to themselves.

Each station has a limited number of charging docks where scooters can be plugged in. Each dock at a station is either
empty, has a charging scooter docked there, or has a fully-charged scooter.

Problem x1.

The provided class Station represents a mutable docking station with some number of docks where scooters can be
charged.

(xa) For each of the following changes, does it break the code, fix the code, or have no effect on the correctness? Ignore
changes to ETU, consider only SFB.

In status(..), use:

return this.docks.map(s => s);

Pickone: O breaks ... and say why:
O fixes
O no effect

Indock(..), use:

this.docks.map(s => s)[dock] = Status.Charging;

Pick one: O breaks ... and say why:
O fixes
O no effect

(xb) Complete the rep invariant for Station:

RI(name, size, docks) = size is a nonnegative integer and...

...and complete the abstraction function, such that they work with provided code after any necessary fixes:

AF(name, size, docks) = the scooter docking station named name...

Problem x 2.
Evalute the following potential changes to specs in Station.
(xa) Compare the original spec for dock (. .) to this alternative:

// Modify this station to have a charging scooter in the given dock.
// Requires 0 < dock < size. Throws an error and makes no modification
// 1f the given dock is not currently Empty.

Given the preconditions, Therefore,
This new precondition is: this new postcondition is: this new specification is:
O stronger O stronger O stronger
O weaker O weaker O weaker
O identical O1identical Oidentical

O incomparable O incomparable Oincomparable

(x<b) Compare the original spec for dock (. .) to this alternative:

// Modify this station to have some scooter in the given dock.
// Requires 0 < dock < size, and the dock must currently be Empty.

This new precondition is:

O stronger

O weaker

O identical

O incomparable

Given the preconditions,

this new postcondition is:

O stronger

O weaker
Oidentical

O incomparable

Therefore,
this new specification is:

O stronger

O weaker
Oidentical

O incomparable

Problem x 3.
The provided class Network represents a mutable network using the rep Map<Station, Set<Station>>.

(<a) Which of the following changes should we make to prevent rep exposure?

- Evaluate just the suggested change: assume we fix other code to work with the change, but don’t assume what the fix is.

- Keep in mind that TypeScript considers Set<E> to be a subtype of ReadonlySet<E> because TypeScript uses structural
subtyping, even though it is not a subtype judging by its specifications.

Change the type of the nearbyStations argumentofadd(..) to ReadonlySet<Station> to prevent rep exposure:

Pickone: Oyes
Ono

... and say why or why not:

Change the type of the return value for getNearby(..) to ReadonlySet<Station> to prevent rep exposure:

Pick one: Oyes
Ono

... and say why or why not:

(x<b) Is it safe to use Station as the type of Map keys and Set elements, given we cannot override the equality comparisons
used by those data structures?

Pick one: Qyes
Ono

... and say why or why not:

Problem x4.

There are still more bugs to fix in Network, because getNearby (. .) requires a rep invariant that add (. .) does not
preserve.

(xa) One partial fix for the problem is to add another precondition to the add (. .) method:
// Requires every station in nearbyStations is in this network.

If we do not add this precondition, what rep invariant needed by getNearby (. .) would the client easily be able to break?

Not sure? Start by writing down any rep invariant needed in NetwoTk.

(xb) After adding this precondition and fixing any rep exposure, there is still a way for a client to break this necessary
invariant using add(..).

Say (without writing code) how a client can call add (. .) and break the rep invariant without the client doing its own
mutation of the rep, neither directly nor through aliases:

(xc) Explain (without writing the code) a change to the implementation of add (. .) that fixes this problem:

Not sure? Start by writing down any bug fix needed in add.

Problem 5.

Instead of the rep used in Network, let’s build an ADT without using maps or sets. Our new rep will be:
private readonly netarr: Array<Array<Station>>;

With the abstraction function:

AF(netarr) = the network with stations { s | s appears in a subarray of netarr }
where two stations s1 and s2 are connected if and only if s1#s2 and netarr contains at least one of:
a subarray whose first element is s1 that also contains s2, and/or
a subarray whose first element is s2 that also contains s1

For example, suppose ABC Town has four stations:

ABC Town
A-B-D
\
C

Without knowing the rep invariant, we might imagine many possible reps for ABC Town, including:
netarr = [[A, B], [B, C, D] 1]

netarr = [[B, C, D, A]]

netarr = [[], [Al, [B], [C], [D], [B, A, A, C, C, D, D11

Assuming A, B, C, and D are appropriate Station objects, all of these reps for ABC Town work with the AF above.

(xa) A weak rep invariant allows more possible rep values. Could we use the following rep invariant, or is it too weak?

Rl(netarr) = true

Pick one: O vyes (leave the box blank)
Ono ... and say why not:

(x<b) A strong rep invariant allows fewer possible rep values. Could we use the following rep invariant, or is it too strong?

RI(netarr) = every station that appears in netarr appears exactly once

Pick one: Qyes (leave the box blank)
Ono ... and say why not:

(x<¢) For each of the following subdomains, say whether we should include it as part of a partition in our documented testing
strategy for getNearby (..):

Want to cover: station has no nearby stations

Pickone: QOyes
Ono

... and say why or why not:

Want to cover: station is nearby itself

Pick one: QOyes
Ono

... and say why or why not:

Want to cover: netarr has no subarrays

Pick one: Qyes
Ono

... and say why or why not:

/*% Station dock status: no scooter, a charging scooter, or a fully-charged scooter. #*/
enum Status {
Empty, Charging, Charged

/** Mutable scooter-sharing network station with docks numbered O through size-1. */

class Station $

3

private readonly docks: Array<Status>;

// Make a new station with the given name and the given number of scooter docks.
// Requires nonnegative integer size.
public constructor(public readonly name: string,
public readonly size: number) {
this.docks = new Array(size).fill(Status.Empty);

// Get the status of all docks at this station.
public status(): Array<Status> {
return this.docks;

// Modify this station to have a charging scooter in the given dock.
// Requires 0 < dock < size, and the dock must currently be Empty.
public dock(dock: number): void {

this.docks[dock] = Status.Charging;

// ... other operations, e.g. taking out a charged scooter, etc.

/** Mutable scooter-sharing network, an undirected graph of mutable stations where

*

each station is only nearby (within scooting range of) certain other stations. */

class Network <

private readonly netmap: Map<Station, Set<Station>> = new Map();

// Make an empty network.
public constructor() { %

// Add the given station to this network if it is not already present,
// and set its nearby stations to the given set of stations.
// Requires station not a member of nearbyStations.
public add(station: Station, nearbyStations: Set<Station>): void {
this.netmap.set(station, nearbyStations);
for (const other of nearbyStations) {
const nearbyOther = this.netmap.get(other);
if (nearbyOther) { nearbyOther.add(station); %

// Get the stations in this network nearby the given station.
public getNearby(station: Station): Set<Station> {

const nearby = this.netmap.get(station);

if (nearby) { return nearby; ¥ else { return new Set(); %

// ... other operations, e.g. removing a station, etc.

Array(length) constructor — create an Array object.
length nonnegative integer length of the new array. Note: this is an array of 1ength empty slots, not slots with undefined
values. Use eg. £i11 (. .) toinitialize the values in the array.

Array fill(value) — change allthe elementsin the array to a given value, and return the modified array.
value the value to fill the array with. Note: all elements in the array will be this exact value.

