
MIT
6.031TS Software Construction — TypeScript Pilot
Prof. Rob Miller and Max Goldman

6.031TS Spring 2021 Quiz 1
You have 50 minutes to complete this quiz. There are 5 problems. The quiz is open-book: you may access any 6.031 or other
resources, but you may not communicate with anyone except the course staff.

This page automatically saves your answers as you work. Saved answers are marked with a green cloud-with-up-arrow icon.
If you see a stuck yellow spinner, red exclamation mark, or a red notification that you are disconnected, your answers are not
being saved: try reloading the page right away, before continuing to work on the quiz. There is no ‘save’ or ‘submit’ button.

If you want to ask a clarification question, visit whoosh.mit.edu/6.031 and click “raise hand” to talk to a staff member.

Good luck!

When the quiz starts, before you begin, please sign this honor statement.

I affirm that I will not communicate with classmates or anyone else (other than 6.031 staff members) about
anything related to this quiz until the solutions are officially released.

By entering your full name below (first and last name), you agree to this honor statement.

Problem Points
 1 24
 2 16
 3 16
 4 26
 5 18

In this quiz you will work with an abstract datatype Duck and some other associated ADTs. For now, Duck declares a single
instance method:

 export enum Squeak { LOUD, QUIET }

 // A rubber duck that can squeak loudly a certain limited number of times.
 export interface Duck {
 // If this duck has loud squeaks remaining,
 // returns LOUD and modifies this duck to reduce that amount by one.
 // Otherwise, returns QUIET.
 squeak(): Squeak;
 }

For brevity, the quiz will use // comments like this instead of /** TypeDoc comments */ for specifications.

maxg

https://whoosh.mit.edu/6.031

Problem 1. (24 points)

(a) With respect to Duck, what two kinds of ADT operation is squeak()? Answer with two words.

Consider this Duck whose rep is an array of booleans:

 export class ArrayDuck implements Duck {
 private squeakiness: Array<boolean>;

 // Creates a new rubber duck that can squeak loudly 4 times.
 public constructor() { ... }

 public squeak(): Squeak { ... }
 }

(b) Alyssa proposes the following rep invariant:

-Either- squeakiness contains only `true` values
 -or- squeakiness contains only `false` values

Write an abstraction function given this rep invariant:

And implement the ArrayDuck constructor to satisfy its spec:

public constructor() {

}

(c) Ben proposes a different rep invariant, using the same array-of-booleans rep:

 squeakiness has length 3

Write an abstraction function given this rep invariant: (Feeling stuck? Try counting in binary.)

And implement the ArrayDuck constructor to satisfy its spec:

public constructor() {

}

observer & mutator

e.g. AF(squeakiness) = a rubber duck that can squeak loudly squeakiness.length times

this.squeakiness = [true, true, true, true];

e.g. AF(squeakiness) = a rubber duck that can squeak loudly sum(2^i for i where squeakiness[i] is true) times

this.squeakiness = [false, false, true];

(d) Write a safety from rep exposure argument that will hold for either of those rep invariants and any correct
implementations of the constructor and squeak():

Problem 2. (16 points)

(a) Louis creates this Duck:

 // A rubber duck that can squeak loudly zero times.
 export class QuietDuck implements Duck {
 public squeak(): Squeak { return Squeak.QUIET; }
 }

And suggests that the entire program can share the following global value:

 export const QUIET_DUCK: Duck = new QuietDuck();

… but receives the cryptic code review: “not RFC, future additions to Duck interface.”

Specifically, what kind of future additions to the Duck interface is the reviewer most worried about?

And what is the most serious problem they pose for the shared QUIET_DUCK?

(b) Chastened, Louis creates this Duck instead:

 // A rubber duck that can squeak loudly infinitely many times.
 export class LoudDuck implements Duck {
 public squeak(): Squeak { return Squeak.LOUD; }
 }

… but receives the cryptic code review: “not SFB, spec!”

Specifically, what about LoudDuck as specified is a bug?

And give an example of how a correct client of Duck could be broken as a result:

e.g. squeakiness is private, the constructor takes no arguments, and squeak() returns an immutable Squeak

mutators that change the abstract value of a duck that currently has zero loud squeaks remaining

all clients will be sharing a mutable global variable, a duck that may or may not have zero loud squeaks remaining

Ducks can squeak loudly "limited" number of times, but LoudDuck can squeak "infinitely" many times

e.g. a client that loops until squeak() returns QUIET will not terminate

Problem 3. (16 points)

(a) Charlie wishes to add a new operation to Duck:

-Either-

 // Modifies this duck by setting
 // new number of loud squeaks remaining = base .
 // Requires positive integer base.
 powerUp(base: number): void

Charlie has already come up with a partition on base.

Write an excellent input space partition, with 3 or more subdomains, that is not a partition on the value of base:

-or-

 // Modifies this duck by setting
 // new number of loud squeaks remaining = (old number of loud squeaks remaining) .
 // Requires positive integer expo.
 powerUp(expo: number): void

Charlie has already come up with a partition on expo.

Write an excellent input space partition, with 3 or more subdomains, that is not a partition on the value of expo:

(b) And one more:

 // Requires nonempty row sorted in ascending order of number of loud squeaks remaining.
 // Returns i such that row[i] is the first duck with more loud squeaks remaining than
 // this duck, or the length of row if there is no such duck.
 placeInRow(row: Array<Duck>): number

Charlie has already come up with a partition on the length of row.

Write an excellent input space partition, with 3 or more subdomains, that is not a partition on the length of row:

(old number of loud squeaks remaining)

expo

e.g. this duck has n loud squeaks remaining: n=0, n=1, n>1

e.g. row contains n ducks with more loud squeaks remaining than this duck: n=0, 0<n<row.length, 0<n=row.length

Problem 4. (26 points)

Yolanda is also building a new feature: rubber duck debugging.

Suppose that Problem and Solution are immutable ADTs. Consider this Duck:

// A debugging rubber duck that can remember its solutions to problems.
export class DebugDuck implements Duck {

 // Creates a new debugging rubber duck that can squeak loudly n times.
 // Requires nonnegative integer n.
 public constructor(n: number) { ... }

 public squeak(): Squeak { ... }

 // If this duck has returned at least one solution to the given problem before,
 // or if this duck has loud squeaks remaining,
 // returns a nonempty list of solutions to the problem.
 // Otherwise, returns null.
 public debug(problem: Problem): Array<Solution>|null { ... }
}

(a) The fact that DebugDucks can, under the right conditions, return Solutions to any Problem is amazing! But the spec of
debug(..) could be improved. Critique that spec: what would be your first and most important piece of code review
feedback?

(b) State two good different ways to revise the spec to solve this problem, giving rewritten versions of the relevant line(s) in
the spec. Do not add new preconditions. Your revisions must retain the same essential functionality, but achieve it in a
different way.

do not use null as a possible return value

in the last line: otherwise, returns an empty list in the last line: otherwise, throws UnsolvableError

(c) Compare the original spec to this shorter alternative:

 // Returns a nonempty list of solutions to the given problem if this duck
 // has loud squeaks remaining. Otherwise, returns null.

This alternative precondition is:

Given the preconditions,
this alternative postcondition is:

This alternative specification is:

(d) Compare the original spec to this shorter alternative:

 // This duck must have loud squeaks remaining.
 // Returns a nonempty list of solutions to the given problem.

This alternative precondition is:

Given the preconditions,
this alternative postcondition is:

This alternative specification is:

(e) Compare the original spec to this alternative, identical except for the 3 line:

 // ... first 2 lines unchanged ...
 // returns a nonempty list of distinct solutions to the problem.
 // ... last line unchanged ...

This alternative precondition is:

Given the preconditions,
this alternative postcondition is:

This alternative specification is:

stronger
weaker
identical
incomparable

stronger
weaker
identical
incomparable

stronger
weaker
identical
incomparable

stronger
weaker
identical
incomparable

stronger
weaker
identical
incomparable

stronger
weaker
identical
incomparable

rd

stronger
weaker
identical
incomparable

stronger
weaker
identical
incomparable

stronger
weaker
identical
incomparable

Problem 5. (18 points)

Zach loves the idea of rubber duck debugging, but does not want mutable ducks and makes a new ImDuck interface.

He has also been spending quarantine with only rubber ducks to talk to. (That may not have been healthy, but he does have a
more realistic estimate of their debugging capabilities than Yolanda.)

// Immutable debugging rubber duck, with a call sign.
export interface ImDuck {
 // Returns the call sign of this duck (in the squeak language of rubber ducks).
 callsign(): Array<Squeak>;

 // Returns LOUD if and only if problem contains this duck's call sign as a subsequence.
 debug(problem: Array<Squeak>): Squeak;
}

// Make a new duck with the given call sign (in the squeak language of rubber ducks).
export function make(callsign: Array<Squeak>): ImDuck { ... }

(a) With respect to ImDuck, what kind(s) of ADT operation is make(..)? Answer with one or more words.

(b) With respect to ImDuck, what kind(s) of ADT operation is callsign()? Answer with one or more words.

(c) Really quite worried about mutability, Zach tries to implement StringImDuck as follows:

1 export class StringImDuck implements ImDuck {
2 private readonly myCallsign: string;
 // Make a new duck with the given call sign.
3 public constructor(callsign: Array<Squeak>) {
4 this.addToCallsign(callsign.shift());
5 while (callsign.length) {
6 this.myCallsign += ',';
7 this.addToCallsign(callsign.shift());
 }
 }
8 private addToCallsign(squeak?: Squeak): void {
9 if (squeak === Squeak.LOUD) {
10 this.myCallsign += 'LOUD';
11 } else {
12 this.myCallsign += 'QUIET';
 }
 }
 // ... other operations ...

Note that shift() works like pop(), but for the first item instead of the last.

creator

observer

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/shift

This code for StringImDuck() is pretty buggy. Write three distinct reasons why the code is wrong. Do not make
assumptions about the RI or AF. Do not state different instances of the same conceptual flaw: state three different problems,
one in each box.

(d) Suddenly concerned about space efficiency, Zach tries to implement EncodedImDuck as follows:

 export class EncodedImDuck implements ImDuck {
 private readonly myCallsign: Array<number>;
 // Make a new duck with the given call sign.
 public constructor(callsign: Array<Squeak>) {
 // encode alternating numbers of consecutive squeaks of the same kind,
 // starting with LOUD
 // for example, callsign = [QUIET, LOUD, LOUD, LOUD, QUIET]
 // becomes this.myCallsign = [0, 1, 3, 1]
 }
 // ... other operations ...

The idea is to use a run-length encoding in the rep: every subsequence of n repeated LOUD or QUIET squeaks is stored as just
the integer n.

Assume the abstraction function works in the most straightforward way to reverse this encoding: if myCallsign[i] = n, that
represents a length-n run of LOUD (if i is even) or QUIET (if i is odd) squeaks in the duck’s call sign.

Write a rep invariant for EncodedImDuck such that every abstract ImDuck can be represented in exactly one way:
(Feeling stuck? Start with any RI, then strengthen.)

cannot reassign readonly property this.myCallsign outside the constructor on lines 10 and 12
-and- readonly property this.myCallsign is never assigned before use in the constructor on line 6

mutating input callsign on lines 4 and 7 is not allowed by the spec

empty callsign input is allowed by the spec but will return undefined on line 4, and would result in appending QUIET if
addToCallsign worked

e.g. all elements of myCallsign are positive, except: if myCallsign.length > 1 then myCallsign[0] may be 0
-or-
let len = myCallsign.length in: len >= 2 && len%2 == 0 && myCallsign[0] >= 0 && for 0<i<len-1, myCallsign[i] > 0 &&
myCallsign[len-1] >= 0

