Example solutions (spring 2020)

This is a subset of the questions that were asked in Java on 6.031 Spring 2020 Quiz 2. They have been translated to
TypeScript here.
The code for this quiz has two ADTSs.

Card represents an immutable standard playing card. A card has a rank (2-10, jack, queen, king, ace) and a suit (clubs,
diamonds, hearts, or spades).

Deck represents a mutable ordered set of at most 52 different playing cards.

The code is provided at the bottom of this page.

1. (9 points) Write a rep for Deck, and write its constructor. Don’t implement any other operations for Deck. You may use the
Card.ALL_52_CARDS constant.

export class Deck {

private readonly caxds: Array<Caxd> = [...Card.ALL 52 CARDS]:

public constxuctox()

2. (8 points) Write the abstraction function for your Deck rep:
AF(cards) = the deck of playing cards consisting of the cards in cards in the same order, where cards[0] is the
top of the deck and cards[cards.length-1] is the bottom of the deck.
3. (8 points) Write the rep invariant for your Deck rep:
cards.length <= 52
all elements of cards are pairwise distinct
4. (8 points) Observe that the return type of Deck.draw() is Optional<Card>, an abstract datatype that either has a
reference to a Card, or has no value.

Suppose you are going to implement the generic Optional<E>. Write a datatype definition for Optional<E>. Your datatype
definition should have two variants.

Optional<E> = Empty + Present(e:E)
5. (9 points) Write the interface and class definitions for your datatype definition. Include the reps, but no methods or

constructors. Your answer should consist of Typescript code from which all methods and constructors (and their signatures
and bodies and associated comments) have been deleted. Don’t write more than the 10 lines this box allows.

intexface Optional<E>
class Empty<E> implements Optional<E> 4

class Present<E> implements Optional<E> |
private readonly e: E;

6. (9 points) We want to add an operation orElse to Optional<E>, such that (for example)
deck.draw() .orElse (aceOfSpades) returns the top card on the deck if the deck is nonempty and ace0OfSpades if the
deck is empty.

Define orElse as a function using mathematical notation, with one case for each variant of your datatype definition. Your
answer should be two lines long, and should not be written in Typescript code. (An example of a function written in
mathematical notation is f(x) = x+1.)

orElse(Empty, defaultValue) = defaultValue)
orElse(Present(e), defaultValue) = e

7. (8 points) A playing card can be described by a 2- or 3-character string such as “10C” for the ten of clubs, or “JH” for the
jack of hearts. Write a grammar for these string representations of playing cards. Your grammar should have three
nonterminals: card, suit, and rank.

card := rank suit;
rank ::=[AJQK2-9]| ‘10’
suit ::= [CDHS];

8. (9 points) Suppose Deck has a filter operation that keeps cards matching a predicate, and discards cards that don’t.
Write a mathematical type signature for a filter producer operation of Deck. (An example of a mathematical type
signature is factorial: int - int.)

filter: Deck x (Card -> Boolean) -> Deck

9. (8 points) Write a Typescript instance method signature for filter as a mutator operation of Deck.

public filter(predicate: (card: Card) => boolean): void;

Deck

/** Represents a mutable deck of distinct playing cards. */
export class Deck {

// rep:

// creates a deck starting with 52 unique playing cards in unspecified order
public constructor() {

// removes and returns top card from deck, unless deck is empty
public draw(): Optional<Card> %

// moves card so that it is nth from the top of this deck
// (i.e. move(card, 0) makes card the top card of the deck).
// No effect if card is not found in this deck.

public move(card: Card, position: number): void {

Caxd

/** Represents an immutable threadsafe standard playing card. #*x/

export class Card {
// immutable set containing all the standard playing cards
public static readonly ALL_52_CARDS: ReadonlySet<Card> = ...;

// operations:

