
This is a subset of the questions that were asked in Java on 6.031 Fall 2019 Quiz 2. They have
been translated to TypeScript here.

The problems in this quiz refer to the code for mutable MutInfoEntry and immutable
ImInfoEntry , at the end of this quiz.

You may detach the code pages.

Train stations, airports, and other transit hubs often have displays that show upcoming
departures or arrivals along with other information: a track or gate number, delays, cancellations,
etc.

For this quiz, an information board is made of several information board entries. Each entry has
limited space: 16 characters to display a destination and 12 characters for a status. Both are
restricted to upper-case letters, digits, colons, and spaces. For example, a board with three
entries:

WASHINGTON DC 11:05 AM

LONDON HEATHROW 11:55 AM

HONG KONG DELAYED

In order to show more information, the board cycles each entry through a looping sequence of
up to four statuses. For example, if WASHINGTON DC and LONDON HEATHROW have 2-
status loops, and HONG KONG has a 3-status loop, then every few seconds the board will
update:

WASHINGTON DC ON TIME
LONDON HEATHROW ON TIME
HONG KONG NEW DEPRTURE

Example questions (fall 2019)

WASHINGTON DC 11:05 AM
LONDON HEATHROW 11:55 AM
HONG KONG 1:40 PM

WASHINGTON DC ON TIME
LONDON HEATHROW ON TIME
HONG KONG DELAYED

WASHINGTON DC 11:05 AM
LONDON HEATHROW 11:55 AM
HONG KONG NEW DEPRTURE

WASHINGTON DC ON TIME
LONDON HEATHROW ON TIME
HONG KONG 1:40 PM

... and so on.

Suppose we want to implement ImInfoEntry (an immutable information board entry) as a
recursive data type with two variants. The two variants are called A and B.

The snapshot diagram below shows how the datatype represents an information board entry
t with destination "BOSTON" and two statuses "11:05 AM" and "ON TIME", whose current

status is "11:05 AM".

2. (26 points) Recursive Datatypes

(a) Write a datatype definition that corresponds to the snapshot diagram and implements
ImInfoEntry .

ImInfoEntry =

(b) Fill in the blanks to implement destination() , status() , and size() for
variants A and B:

export class A implements ImInfoEntry {
 ...
 public destination(): string { return ____________________________ ; }

 public status(): string { return ____________________________ ; }

 public size(): number { return ____________________________ ; }
}

export class B implements ImInfoEntry {
 ...
 public destination(): string { return ____________________________ ; }

 public status(): string { return ____________________________ ; }

 public size(): number { return ____________________________ ; }
}

To help implement the nextEntry operation, we add one more variant C . The result of
u = t.nextEntry() is shown in the snapshot diagram below.

(c) Fill in the blanks to implement nextEntry() for all three variants.

export class A implements ImInfoEntry {
 ...
 public nextEntry(): ImInfoEntry {
 return new C(this, this.rest);
 }
}

export class B implements ImInfoEntry {
 ...
 public nextEntry(): ImInfoEntry {

 return ___ ;

 }
}

export class C implements ImInfoEntry {
 ...
 public nextEntry(): ImInfoEntry {
 if (this.curr.size() === 1) { // curr has reached the end of the list

 return ___ ;

 } else {

 return ___ ;
 }
 }
}

(a) Which of these regular expressions accept (fully match) every legal status and destination
string, and reject (fail to fully match) at least one illegal string? Circle YES or NO.

[A-Z0-9:]+
 matches every legal string? YES NO

 rejects at least one illegal string? YES NO

3. (22 points) Grammars

([A-Z]*|[0-9]*|:*| *)+
 matches every legal string? YES NO

 rejects at least one illegal string? YES NO

[A-Z]*[0-9]*[:]*[]*
 matches every legal string? YES NO

 rejects at least one illegal string? YES NO

.*[A-Z0-9:]*
 matches every legal string? YES NO

 rejects at least one illegal string? YES NO

(b) Suppose an information board entry is represented as a string of text as in this example:

WASHINGTON|NEW DEPRTURE,TRACK 2,11:35AM

Complete the grammar below so that it can be used to parse an information board entry, with
starting nonterminal infoentry . Your grammar must use the destination and
status nonterminals shown, which you can assume have been defined with a correct

answer from part (a).

For the purpose of this grammar, assume that statuses and destinations have no maximum
length, and an information board entry has no maximum number of statuses.

destination ::= *a correct regular expression from part (a)*
status ::= *a correct regular expression from part (a)*

Suppose we add map and filter operations to ImInfoEntry , to transform the (cyclic)
stream of status messages that an information board entry displays:

4. (26 points) Map/Filter and Callbacks

map: ImInfoEntry x (string -> string) -> ImInfoEntry
filter: ImInfoEntry x (string -> boolean) -> ImInfoEntry

These operations affect only the statuses of an ImInfoEntry , not its destination.

(a) Of the four kinds of ADT operations, what kind(s) of operations is ImInfoEntry.map ?
Leave extra boxes blank:

(b) Use map to replace every English status message found in the translations map
below with its corresponding French translation.

let translations: Map<string, string> = new Map([["ON TIME", "A LHEURE"
],
 ["CANCELED", "SUPPRIME"]]);

let train1: ImInfoEntry = parseImInfoEntry("MONTREAL|ON TIME,11:05 AM");
// train1 has statuses "ON TIME", "11:05 AM"

let train2: ImInfoEntry = train1.map((...MAP...));
// train2 has statuses "A LHEURE", "11:05 AM"

Write a function to replace (...MAP...) in the code above:

(c) Write a function that, if passed to filter (not map), would transform the stream of
status messages in a way that cannot be a legal abstract value of the ImInfoEntry type.

Now suppose that a mutable information board entry MutInfoEntry also has a map

operation:

map: MutInfoEntry x (string => string) => void

MutInfoEntry.map transforms all statuses subsequently returned by the entry, as shown in
this example:

1 const toFrench: string => string = ...MAP...; // a correct answer to p
art (b) above
2 const train: MutInfoEntry = new MutInfoEntry("MONTREAL");
3 train.nextStatus(); // returns ""
4 train.map(toFrench);
5 train.setStatuses(["ON TIME","11:05 AM"]);
6 train.nextStatus(); // returns "A LHEURE"
7 train.nextStatus(); // returns "11:05 AM"
8 train.setStatuses(["CANCELED"]);
9 train.nextStatus(); // returns "SUPPRIME"

(d) What kind(s) of operation is MutInfoEntry.map ? Leave extra boxes blank:

To implement map , the rep of MutInfoEntry now has a third field:

private f: string => string;

and its abstraction function is (only relevant parts shown):

AF(destination , statuses , f) = the info board entry with current status
f(statuses[0]) and looping through future statuses f(statuses[1]) , ...,
f(statuses[statuses.length-1]) , f(status[0]) , and so on... [rest of AF

elided]

The MutInfoEntry methods are implemented to obey this AF and behave as shown in the
code above.

(e) Write a function for the initial value of f for a new MutInfoEntry object.

(f) During which of the numbered lines in the example code above (d) is the toFrench

function called? List all line numbers that apply, or write NEVER if toFrench is never called.
Note that this question is asking about toFrench .

(g) What should MutInfoEntry 's rep invariant comment say about f ? Note that this
question is asking about f .

/**
 * An information board entry that shows a destination (e.g. "WASHINGTON DC")
 * and current status (e.g. "DELAYED") in a cycle of 1 to 4 statuses
 * (e.g. ["DELAYED", "NEW DEPRTURE", "11:55 AM"]).
 *
 * A valid destination is up to 16 characters, consisting only of
 * upper-case letters A-Z, digits, colons, or spaces.
 *
 * A valid status is up to 12 characters, consisting only of
 * upper-case letters A-Z, digits, colons, or spaces.
 */
export interface ImInfoEntry {

 /** @return the destination*/
 destination(): string;

 /** @return the currently-shown status */
 status(): string;

 /** @return the entry with the same destination and statuses,
 * showing the next status in the cycle */
 nextEntry(): ImInfoEntry;

 /** @return number of statuses in the cycle, integer from 1 to 4 */
 size(): number;
}

/**
 * @param entry information board entry represented as a string according
 * to the grammar in Problem 3

Code

 * @return corresponding information board entry value
 */
export function parseImInfoEntry(entry: string): ImInfoEntry { ... }

/**
 * An information board entry that shows a destination (e.g. "WASHINGTON DC")
 * and cycles through a list of 1 to 4 statuses (e.g. ["11:05 AM", "ON TIME"],
 * or ["NOW BOARDING", "TRACK 3"]).
 *
 * A valid destination is up to 16 characters, consisting only of
 * upper-case letters A-Z, digits, colons, or spaces.
 *
 * A valid status is up to 12 characters, consisting only of
 * upper-case letters A-Z, digits, colons, or spaces.
 */
export class MutInfoEntry {

 private statuses: string[] = [];

 // Abstraction function:
 // <elided>
 // Rep invariant:
 // - destination is a valid destination (defined above)
 // - statuses has 1-4 elements, each of which is a valid status (defined above)

 /** Create a new information board entry with the given destination and
 * a single empty status.
 * @param destination a valid destination (defined above) */
 public constructor(public readonly destination: string) {
 statuses.push("");
 }

 /** @return the destination */
 public destination(): string { return destination; }

 /** @return the next status to display, infinitely cycling through this
 * info board entry's statuses in order */
 public nextStatus(): string {
 const status: string = statuses.shift()
 statuses.push(status); // put it back on end so that statuses cycle forever
 return status;
 }

 /** Set the statuses. The first status in the list will be displayed next.
 * @param statuses new statuses, a 1- to 4-item list of valid statuses */

 public setStatuses(statuses: string[]): void {
 this.statuses = [...statuses];
 }
}

