
“quiz2_soln” — 2019/12/4 — 16:22 — page 1 — #1

MIT
6.031: Software Construction
Max Goldman and Prof. Rob Miller revised Wednesday 4th December, 2019, 16:22

Solutions to Quiz 2 (December 3, 2019)
This quiz uses the same abstract data type as Quiz 1, information board entries. The description of the
abstract values is reproduced on the rest of this page, unchanged from Quiz 1.

The problems in this quiz refer to the code for mutable MutInfoEntry and immutable ImInfoEntry,
starting on page 11. This code is different than the code in Quiz 1. You may detach the code pages.

Train stations, airports, and other transit hubs often have displays that show upcoming departures or arrivals
along with other information: a track or gate number, delays, cancellations, etc.

For this quiz, an information board is made of several information board entries. Each entry has limited
space: 16 characters to display a destination and 12 characters for a status. Both are restricted to upper-case
letters, digits, colons, and spaces. For example, a board with three entries:

WASHINGTON DC 11:05 AM
LONDON HEATHROW 11:55 AM
HONG KONG DELAYED

In order to show more information, the board cycles each entry through a looping sequence of up to four
statuses. For example, if WASHINGTON DC and LONDON HEATHROW have 2-status loops, and HONG
KONG has a 3-status loop, then every few seconds the board will update:

WASHINGTON DC ON TIME
LONDON HEATHROW ON TIME
HONG KONG NEW DEPRTURE

WASHINGTON DC 11:05 AM
LONDON HEATHROW 11:55 AM
HONG KONG 1:40 PM

WASHINGTON DC ON TIME
LONDON HEATHROW ON TIME
HONG KONG DELAYED

WASHINGTON DC 11:05 AM
LONDON HEATHROW 11:55 AM
HONG KONG NEW DEPRTURE

WASHINGTON DC ON TIME
LONDON HEATHROW ON TIME
HONG KONG 1:40 PM

. . . and so on.

Problem 1 (Thread Safety) (26 points).
Suppose a train station’s information board system uses MutInfoEntry objects. The system is multi-
threaded:

“quiz2_soln” — 2019/12/4 — 16:22 — page 2 — #2

2 Solutions to Quiz 2 (December 3, 2019)

• one thread, the display thread, calls nextStatus() on all the MutInfoEntry objects every few
seconds in order to display a cycling sequence of statuses to people in the station.

• other threads, the update threads, can call setStatuses() on any MutInfoEntry object when
updated information about a train is received.

(a) Describe a race condition between the display thread and an update thread by showing an interleaving
of operations that leads to a bad outcome, and state what the bad outcome is.

display thread update thread

bad outcome:

Solution.

One bad interleaving is statuses.clear() on the update thread, immediately followed by statuses.remove(0)
on the display thread, leading to throwing an ArrayIndexOutOfBoundsException, which violates the
postcondition of nextStatus().

Another bad interleaving is statuses.remove(0) on the display thread, immediately followed by statuses.clear()
on the update thread, which eventually puts an out-of-date status back on the end of the just-updated statuses
list, violating the postcondition of setStatuses(). If setStatuses() was called with a 4-element list,
then this would also lead to breaking the rep invariant, since statuses now contains 5 statuses.

�

(b) Which objects involved in the rep of MutInfoEntry are in danger of having their rep invariants broken
by concurrency? Circle either DANGER or SAFE, and explain why in at most one sentence.

ArrayList rep invariant
DANGER SAFE because:

MutInfoEntry rep invariant
DANGER SAFE because:

String rep invariant
DANGER SAFE because:

Solution.

ArrayList is SAFE because the only reference to it is inside a synchronized wrapper. The answer "SAFE
because ArrayList is responsible for establishing and maintaining its own rep invariant" is not correct, be-
cause this question asked specifically about concurrency, and ArrayList does not guarantee to be thread-
safe. The answer "DANGER because ArrayList is not threadsafe" is also not a sufficient answer, because
it ignores the presence of the synchronized wrapper. The answer "DANGER" with an explanation that
talks about dangers to the MutInfoEntry rep invariant, is also not correct, because the constraints on a
MutInfoEntry rep aren’t relevant to ArrayList’s rep invariant.

MutInfoEntry is in DANGER because interleaved calls to setStatuses() (between two update threads)
or nextStatus() and setStatuses() (between the display thread and an update thread) could end up
putting more than 4 statuses on the list.

String is SAFE because it is immutable.

�

“quiz2_soln” — 2019/12/4 — 16:22 — page 3 — #3

Solutions to Quiz 2 (December 3, 2019) 3

(c) Suppose that we decide to use the monitor pattern. State in one sentence what changes we would make
to MutInfoEntry.

Solution.

Use the keyword synchronized on every public instance method of MutInfoEntry.

Other ways of using synchronized (e.g. only on the methods that touch statuses, or using the lock on
the statuses object rather than this) may indeed solve the race condition in part (a), but they are not the
monitor pattern. �

Problem 2 (Recursive Datatypes) (26 points).
Suppose we want to implement ImInfoEntry (an immutable information board entry) as a recursive data
type with two variants. The two variants are called A and B.

The snapshot diagram below shows how the datatype represents an information board entry t with destina-
tion “BOSTON” and two statuses “11:05 AM” and “ON TIME”, whose current status is “11:05 AM”.

(a) Write a datatype definition that corresponds to the snapshot diagram and implements ImInfoEntry.

ImInfoEntry =

Solution.

A(stat:String, rest:ImInfoEntry) + B(stat:String, dest:String)

�

(b) Fill in the blanks to implement destination(), status(), and size() for variants A and B:

public class A implements ImInfoEntry {
...
public String destination() { return ___ ; }

public String status() { return ___ ; }

public int size() { return ___ ; }

“quiz2_soln” — 2019/12/4 — 16:22 — page 4 — #4

4 Solutions to Quiz 2 (December 3, 2019)

}

public class B implements ImInfoEntry {
...
public String destination() { return ___ ; }

public String status() { return ___ ; }

public int size() { return ___ ; }
}

Solution.

public class A implements ImInfoEntry {
...
public String destination() { return this.rest.destination(); }

public String status() { return this.stat; }

public int size() { return 1 + this.rest.size(); }
}

public class B implements ImInfoEntry {
...
public String destination() { return this.dest; }

public String status() { return this.stat; }

public int size() { return 1; }
}

�

To help implement the nextEntry operation, we add one more variant C.
The result of u = t.nextEntry() is shown in the snapshot diagram below.

“quiz2_soln” — 2019/12/4 — 16:22 — page 5 — #5

Solutions to Quiz 2 (December 3, 2019) 5

(c) Fill in the blanks to implement nextEntry() for all three variants.

public class A implements ImInfoEntry {
...
public ImInfoEntry nextEntry() {

return new C(this, rest);
}

}

public class B implements ImInfoEntry {
...
public ImInfoEntry nextEntry() {

return __ ;

}
}

public class C implements ImInfoEntry {
...
public ImInfoEntry nextEntry() {
if (this.curr.size() == 1) { // curr has reached the end of the list

return __ ;

} else {

return __ ;
}

}
}

Solution.

“quiz2_soln” — 2019/12/4 — 16:22 — page 6 — #6

6 Solutions to Quiz 2 (December 3, 2019)

From the example and code shown for A.nextEntry(), the datatype definition is now:

ImInfoEntry = A(stat:String, rest:ImInfoEntry)
+ B(stat:String, dest:String)
+ C(restart:ImInfoEntry, curr:ImInfoEntry)

The C variant represents an information entry whose current status is curr.status() (i.e., possibly ad-
vanced farther down the list), and whose future statuses follow the rest pointers from curr until the end
of the list (a B variant), and then loop back to restart.

So the given code for A.nextEntry() constructs a C whose restart is the A object and whose current
status is the successor of the A object:

public class A implements ImInfoEntry {
...
public ImInfoEntry nextEntry() {

return new C(this, rest);
}

}

Here is the simplest answer for B.nextEntry():

public class B implements ImInfoEntry {
...
public ImInfoEntry nextEntry() {

return this;
}

}

...because B represents an entry with only 1 status, so it immediately loops back to itself. Another possible
answer is new C(this, this).

Here is the simplest answer for B.nextEntry():

public class C implements ImInfoEntry {
...
public ImInfoEntry nextEntry() {
if (this.curr.size() == 1) { // curr has reached the end of the list

return this.restart;

} else {

return new C(this.restart, this.curr.nextEntry());
}

}
}

As before, new C(this.restart, this.restart) would also work for the first return statement.

Note that C is an immutable object, so it’s necessary to create a fresh C here rather than, say, reassigning
this.curr = this.curr.nextEntry().

Note also that this.curr.rest is not correct, because this.curr might refer to any ImInfoEntry
variant – A, B, or even C. this.curr doesn’t necessarily point to a B object, and so the rest instance
variable doesn’t necessarily exist on that object.

“quiz2_soln” — 2019/12/4 — 16:22 — page 7 — #7

Solutions to Quiz 2 (December 3, 2019) 7

�

Problem 3 (Grammars) (22 points).

(a) Which of these regular expressions accept (fully match) every legal status and destination string, and
reject (fail to fully match) at least one illegal string? Circle YES or NO.

[A-Z0-9:]+
matches every legal string? YES NO

rejects at least one illegal string? YES NO

Solution.

NO to matching every legal string – it does not match the empty string, which is a legal status.

YES to rejecting at least one illegal string – for example, it rejects the illegal string ",".

�

([A-Z]*|[0-9]*|:*| *)+
matches every legal string? YES NO

rejects at least one illegal string? YES NO

Solution.

YES to matching every legal string. The parenthesized regex can match any legal character, and can also
match the empty string. The parenthesized regex must then match at least once, because of the + operator
applied to it, but because the parenthesized regex can match the empty string, this means that the overall
regex can also match the empty string.

YES to rejecting at least one illegal string – for example, it rejects the illegal string ",".

�

[A-Z]*[0-9]*[:]*[]*
matches every legal string? YES NO

rejects at least one illegal string? YES NO

Solution.

NO to matching every legal string – it does not match "11:05 AM", for example, because once the colon
has matched [:]*, there is no way to match the remaining digits and letters in the string.

YES to rejecting at least one illegal string – for example, it rejects the illegal string ",".

�

“quiz2_soln” — 2019/12/4 — 16:22 — page 8 — #8

8 Solutions to Quiz 2 (December 3, 2019)

.*[A-Z0-9:]*
matches every legal string? YES NO

rejects at least one illegal string? YES NO

Solution.

YES to matching every legal string, because .* can match the empty string at the start, and then [A-Z0-9:]*
can match the rest of a legal string.

NO to rejecting at least one illegal string, because this regex actually matches all possible strings – .* can
match the entire string first, and then [A-Z0-9:]* can be satisfied by matching the empty string at the
end.

�

(b) Suppose an information board entry is represented as a string of text as in this example:

WASHINGTON|NEW DEPRTURE,TRACK 2,11:35AM

Complete the grammar below so that it can be used to parse an information board entry, with starting
nonterminal infoentry. Your grammar must use the destination and status nonterminals shown,
which you can assume have been defined with a correct answer from part (a).

For the purpose of this grammar, assume that statuses and destinations have no maximum length, and an
information board entry has no maximum number of statuses.

destination ::= a correct regular expression from part (a)
status ::= a correct regular expression from part (a)

infoentry ::=

Solution.

infoentry ::= destination ’|’ status (’,’ status)*

Here is another solution that avoids using the repetition operator * by introducing a new nonterminal:

infoentry ::= destination ’|’ statuses
statuses ::= status | status (’,’ status)*

And here is a solution that enforces the maximum number of statuses (which was not required by the
instructions):

infoentry ::= destination ’|’ statuses
statuses ::= status

| status ’,’ status
| status ’,’ status ’,’ status
| status ’,’ status ’,’ status ’,’ status

�

Problem 4 (Map/Filter and Callbacks) (26 points).
Suppose we add map and filter operations to ImInfoEntry, to transform the (cyclic) stream of status
messages that an information board entry displays:

“quiz2_soln” — 2019/12/4 — 16:22 — page 9 — #9

Solutions to Quiz 2 (December 3, 2019) 9

map: ImInfoEntry x (String -> String) -> ImInfoEntry
filter: ImInfoEntry x (String -> Boolean) -> ImInfoEntry

These operations affect only the statuses of an ImInfoEntry, not its destination.

(a) Of the four kinds of ADT operations, what kind(s) of operations is ImInfoEntry.map? Leave extra
boxes blank:

Solution.

Producer.

�

(b) Use map to replace every English status message found in the translations map below with its
corresponding French translation.

Map<String, String> translations = Map.of("ON TIME", "A LHEURE",
"CANCELED", "SUPPRIME");

ImInfoEntry train1 = ImInfoEntry.parse("MONTREAL|ON TIME,11:05 AM");
// train1 has statuses "ON TIME", "11:05 AM"

ImInfoEntry train2 = train1.map(...MAP...);
// train2 has statuses "A LHEURE", "11:05 AM"

Write a Java lambda expression for ...MAP... in the code above:

Solution.

status -> map.getOrDefault(status, status)

Alternatively:

status -> {
if (map.containsKey(status)) {

return map.get(status);
} else {

return status;
}

}

�

(c) Write a Java lambda expression that, if passed to filter (not map), would transform the stream of
status messages in a way that cannot be a legal abstract value of the ImInfoEntry type.

Solution.

This filter function would fail to match all possible status messages, which is illegal because an information
entry must have at least one status:

status -> false

“quiz2_soln” — 2019/12/4 — 16:22 — page 10 — #10

10 Solutions to Quiz 2 (December 3, 2019)

�

Now suppose that a mutable information board entry MutInfoEntry also has a map operation:

map: MutInfoEntry x (String -> String) -> void

MutInfoEntry.map transforms all statuses subsequently returned by the entry, as shown in this example:

1 Function<String, String> toFrench = ...MAP...; // a correct answer to part (b) above
2 MutInfoEntry train = new MutInfoEntry("MONTREAL");
3 train.nextStatus(); // returns ""
4 train.map(toFrench);
5 train.setStatuses(List.of("ON TIME","11:05 AM"));
6 train.nextStatus(); // returns "A LHEURE"
7 train.nextStatus(); // returns "11:05 AM"
8 train.setStatuses(List.of("CANCELED"));
9 train.nextStatus(); // returns "SUPPRIME"

(d) What kind(s) of operation is MutInfoEntry.map? Leave extra boxes blank:

Solution.

Mutator.

Note that "observer" is not a good answer here, because the map operation by itself returns no information
to the client, and doesn’t even necessarily call the client’s transform function with any statuses (yet).

�

To implement map, the rep of MutInfoEntry now has a third field:

private Function<String, String> f;

and its abstraction function is (only relevant parts shown):

AF(destination, statuses, f) = the info board entry with current status f(statuses[0])
and looping through future statuses f(statuses[1]), ..., f(statuses[statuses.length-1]),
f(status[0]), and so on... [rest of AF elided]

The MutInfoEntry methods are implemented to obey this AF and behave as shown in the code above.

(e) Write a Java lambda expression for the initial value of f for a new MutInfoEntry object.

Solution.

It should be the identity function, e.g.:

status -> status

�

(f) During which of the numbered lines in the example code above is the toFrench function called? List
all line numbers that apply, or write NEVER if toFrench is never called. Note that this question is asking
about toFrench.

“quiz2_soln” — 2019/12/4 — 16:22 — page 11 — #11

Solutions to Quiz 2 (December 3, 2019) 11

Solution.

Lines 6, 7, 9. toFrench must be called by every nextStatus() call after it is installed.

Line 3 is not correct because toFrench is not been called yet.

Line 4 is not correct because toFrench is passed just as a reference to the function, not a call.

Lines 5, and 8 are not correct because the abstraction function declares that statuses in the rep is a list
of untransformed statuses. The map function should not be called when the statuses are stored, only when
they are displayed. Calling toFrench during these lines is possible (perhaps by a fast-failing checkRep()
method) but not necessary.

�

(g) What should MutInfoEntry’s rep invariant comment say about f? Note that this question is asking
about f.

Solution.

f is a function that requires a valid status as input (the precondition) and returns a valid status (postcondi-
tion). Without this constraint, the nextStatus() operation is unable to satisfy its postcondition.

A statement that includes only the postcondition – e.g. "f returns only valid statuses" – is too strong, because
it excludes many valid functions. For example, the identity function can return an invalid status if it is given
an invalid status.

A statement that speaks only about the current state of the object – e.g. "f(statuses[i]) is a valid status
for all i" – is not strong enough. There may be some valid status s *not currently* in statuses where
f(s) is invalid. setStatuses() would have to accept s as one of the new statuses, but this would break
the rep.

A statement that repeats the type signature of f, e.g. "f is a function from strings to strings", is not strong
enough, and is unnecessary to include in the rep invariant comment because the type declaration already
states it.

�

You may detach this page. Write your username at the top, and hand in all pages when you leave.

/**
* An information board entry that shows a destination (e.g. "WASHINGTON DC")

* and cycles through a list of 1 to 4 statuses (e.g. ["11:05 AM", "ON TIME"],

* or ["NOW BOARDING", "TRACK 3"]).

*
* A valid destination is up to 16 characters, consisting only of

* upper-case letters A-Z, digits, colons, or spaces.

*
* A valid status is up to 12 characters, consisting only of

* upper-case letters A-Z, digits, colons, or spaces.

*/
public class MutInfoEntry {

private final String destination;

“quiz2_soln” — 2019/12/4 — 16:22 — page 12 — #12

12 Solutions to Quiz 2 (December 3, 2019)

private List<String> statuses = Collections.synchronizedList(new ArrayList<String>());

// Abstraction function:
// <elided>
// Rep invariant:
// - destination is a valid destination (defined above)
// - statuses has 1-4 elements, each of which is a valid status (defined above)

/** Create a new information board entry with the given destination and

* a single empty status.

* @param destination a valid destination (defined above) */
public MutInfoEntry(String destination) {

this.destination = destination;
statuses.add("");

}

/** @return the destination */
public String destination() { return destination; }

/** @return the next status to display, infinitely cycling through this

* info board entry’s statuses in order */
public String nextStatus() {

final String status = statuses.remove(0);
statuses.add(status); // put it back on end so that statuses cycle forever
return status;

}

/** Set the statuses. The first status in the list will be displayed next.

* @param statuses new statuses, a 1- to 4-item list of valid statuses */
public void setStatuses(List<String> statuses) {

this.statuses.clear();
this.statuses.addAll(statuses);

}
}

You may detach this page. Write your username at the top, and hand in all pages when you leave.

/**
* An information board entry that shows a destination (e.g. "WASHINGTON DC")

* and current status (e.g. "DELAYED") in a cycle of 1 to 4 statuses

* (e.g. ["DELAYED", "NEW DEPRTURE", "11:55 AM"]).

*
* A valid destination is up to 16 characters, consisting only of

* upper-case letters A-Z, digits, colons, or spaces.

*
* A valid status is up to 12 characters, consisting only of

* upper-case letters A-Z, digits, colons, or spaces.

*/
public interface ImInfoEntry {

/** @return the destination */

“quiz2_soln” — 2019/12/4 — 16:22 — page 13 — #13

Solutions to Quiz 2 (December 3, 2019) 13

public String destination();

/** @return the currently-shown status */
public String status();

/** @return the entry with the same destination and statuses,

* showing the next status in the cycle */
public ImInfoEntry nextEntry();

/** @return number of statuses in the cycle, from 1 to 4 */
public int size();

/** @param entry information board entry represented as a string according

* to the grammar in Problem 3

* @return corresponding information board entry value */
public static ImInfoEntry parse(String entry) { ... }

}

	Problem 1
	Problem 2
	Problem 3
	Problem 4

