
“quiz2” — 2019/12/4 — 16:22 — page 1 — #1

MIT
6.031: Software Construction
Max Goldman and Prof. Rob Miller revised Wednesday 4th December, 2019, 16:22

Quiz 2 (December 3, 2019)

Your name:

Your Kerberos username:

You have 50 minutes to complete this quiz. It contains 10 pages (including this page) for a total
of 100 points.

The quiz is closed-book and closed-notes, but you are allowed one two-sided page of notes.

Please check your copy to make sure that it is complete before you start. Turn in all pages,
together, when you finish. Before you begin, write your Kerberos username on the top of every
page.

Please write neatly. No credit will be given if we cannot read what you write.

For questions which require you to choose your answer(s) from a list, do so clearly and unam-
biguously by circling the letter(s) or entire answer(s). Do not use check marks, underlines, or
other annotations – they will not be graded.

Good luck!

Problem Points

1: Thread Safety 26

2: Recursive Datatypes 26

3: Grammars 22

4: Map/Filter and Callbacks 26

Total 100

“quiz2” — 2019/12/4 — 16:22 — page 2 — #2

2 Your Kerberos username: Quiz 2 (December 3, 2019)

This quiz uses the same abstract data type as Quiz 1, information board entries. The description of the
abstract values is reproduced on the rest of this page, unchanged from Quiz 1.

The problems in this quiz refer to the code for mutable MutInfoEntry and immutable ImInfoEntry,
starting on page 9. This code is different than the code in Quiz 1. You may detach the code pages.

Train stations, airports, and other transit hubs often have displays that show upcoming departures or arrivals
along with other information: a track or gate number, delays, cancellations, etc.

For this quiz, an information board is made of several information board entries. Each entry has limited
space: 16 characters to display a destination and 12 characters for a status. Both are restricted to upper-case
letters, digits, colons, and spaces. For example, a board with three entries:

WASHINGTON DC 11:05 AM
LONDON HEATHROW 11:55 AM
HONG KONG DELAYED

In order to show more information, the board cycles each entry through a looping sequence of up to four
statuses. For example, if WASHINGTON DC and LONDON HEATHROW have 2-status loops, and HONG
KONG has a 3-status loop, then every few seconds the board will update:

WASHINGTON DC ON TIME
LONDON HEATHROW ON TIME
HONG KONG NEW DEPRTURE

WASHINGTON DC 11:05 AM
LONDON HEATHROW 11:55 AM
HONG KONG 1:40 PM

WASHINGTON DC ON TIME
LONDON HEATHROW ON TIME
HONG KONG DELAYED

WASHINGTON DC 11:05 AM
LONDON HEATHROW 11:55 AM
HONG KONG NEW DEPRTURE

WASHINGTON DC ON TIME
LONDON HEATHROW ON TIME
HONG KONG 1:40 PM

. . . and so on.

“quiz2” — 2019/12/4 — 16:22 — page 3 — #3

Quiz 2 (December 3, 2019) Your Kerberos username: 3

Problem 1 (Thread Safety) (26 points).
Suppose a train station’s information board system uses MutInfoEntry objects. The system is multi-
threaded:

• one thread, the display thread, calls nextStatus() on all the MutInfoEntry objects every few
seconds in order to display a cycling sequence of statuses to people in the station.

• other threads, the update threads, can call setStatuses() on any MutInfoEntry object when
updated information about a train is received.

(a) Describe a race condition between the display thread and an update thread by showing an interleaving
of operations that leads to a bad outcome, and state what the bad outcome is.

display thread update thread

bad outcome:

(b) Which objects involved in the rep of MutInfoEntry are in danger of having their rep invariants broken
by concurrency? Circle either DANGER or SAFE, and explain why in at most one sentence.

ArrayList rep invariant
DANGER SAFE because:

MutInfoEntry rep invariant
DANGER SAFE because:

String rep invariant
DANGER SAFE because:

(c) Suppose that we decide to use the monitor pattern. State in one sentence what changes we would make
to MutInfoEntry.

“quiz2” — 2019/12/4 — 16:22 — page 4 — #4

4 Your Kerberos username: Quiz 2 (December 3, 2019)

Problem 2 (Recursive Datatypes) (26 points).
Suppose we want to implement ImInfoEntry (an immutable information board entry) as a recursive data
type with two variants. The two variants are called A and B.

The snapshot diagram below shows how the datatype represents an information board entry t with destina-
tion “BOSTON” and two statuses “11:05 AM” and “ON TIME”, whose current status is “11:05 AM”.

(a) Write a datatype definition that corresponds to the snapshot diagram and implements ImInfoEntry.

ImInfoEntry =

(b) Fill in the blanks to implement destination(), status(), and size() for variants A and B:

public class A implements ImInfoEntry {
...
public String destination() { return ___ ; }

public String status() { return ___ ; }

public int size() { return ___ ; }
}

public class B implements ImInfoEntry {
...
public String destination() { return ___ ; }

public String status() { return ___ ; }

public int size() { return ___ ; }
}

“quiz2” — 2019/12/4 — 16:22 — page 5 — #5

Quiz 2 (December 3, 2019) Your Kerberos username: 5

To help implement the nextEntry operation, we add one more variant C.
The result of u = t.nextEntry() is shown in the snapshot diagram below.

(c) Fill in the blanks to implement nextEntry() for all three variants.

public class A implements ImInfoEntry {
...
public ImInfoEntry nextEntry() {

return new C(this, rest);
}

}

public class B implements ImInfoEntry {
...
public ImInfoEntry nextEntry() {

return __ ;

}
}

public class C implements ImInfoEntry {
...
public ImInfoEntry nextEntry() {
if (this.curr.size() == 1) { // curr has reached the end of the list

return __ ;

} else {

return __ ;
}

}
}

“quiz2” — 2019/12/4 — 16:22 — page 6 — #6

6 Your Kerberos username: Quiz 2 (December 3, 2019)

Problem 3 (Grammars) (22 points).

(a) Which of these regular expressions accept (fully match) every legal status and destination string, and
reject (fail to fully match) at least one illegal string? Circle YES or NO.

[A-Z0-9:]+
matches every legal string? YES NO

rejects at least one illegal string? YES NO

([A-Z]*|[0-9]*|:*| *)+
matches every legal string? YES NO

rejects at least one illegal string? YES NO

[A-Z]*[0-9]*[:]*[]*
matches every legal string? YES NO

rejects at least one illegal string? YES NO

.*[A-Z0-9:]*
matches every legal string? YES NO

rejects at least one illegal string? YES NO

(b) Suppose an information board entry is represented as a string of text as in this example:

WASHINGTON|NEW DEPRTURE,TRACK 2,11:35AM

Complete the grammar below so that it can be used to parse an information board entry, with starting
nonterminal infoentry. Your grammar must use the destination and status nonterminals shown,
which you can assume have been defined with a correct answer from part (a).

For the purpose of this grammar, assume that statuses and destinations have no maximum length, and an
information board entry has no maximum number of statuses.

destination ::= a correct regular expression from part (a)
status ::= a correct regular expression from part (a)

infoentry ::=

“quiz2” — 2019/12/4 — 16:22 — page 7 — #7

Quiz 2 (December 3, 2019) Your Kerberos username: 7

Problem 4 (Map/Filter and Callbacks) (26 points).
Suppose we add map and filter operations to ImInfoEntry, to transform the (cyclic) stream of status
messages that an information board entry displays:

map: ImInfoEntry x (String -> String) -> ImInfoEntry
filter: ImInfoEntry x (String -> Boolean) -> ImInfoEntry

These operations affect only the statuses of an ImInfoEntry, not its destination.

(a) Of the four kinds of ADT operations, what kind(s) of operations is ImInfoEntry.map? Leave extra
boxes blank:

(b) Use map to replace every English status message found in the translations map below with its
corresponding French translation.

Map<String, String> translations = Map.of("ON TIME", "A LHEURE",
"CANCELED", "SUPPRIME");

ImInfoEntry train1 = ImInfoEntry.parse("MONTREAL|ON TIME,11:05 AM");
// train1 has statuses "ON TIME", "11:05 AM"

ImInfoEntry train2 = train1.map(...MAP...);
// train2 has statuses "A LHEURE", "11:05 AM"

Write a Java lambda expression for ...MAP... in the code above:

(c) Write a Java lambda expression that, if passed to filter (not map), would transform the stream of
status messages in a way that cannot be a legal abstract value of the ImInfoEntry type.

“quiz2” — 2019/12/4 — 16:22 — page 8 — #8

8 Your Kerberos username: Quiz 2 (December 3, 2019)

Now suppose that a mutable information board entry MutInfoEntry also has a map operation:

map: MutInfoEntry x (String -> String) -> void

MutInfoEntry.map transforms all statuses subsequently returned by the entry, as shown in this example:

1 Function<String, String> toFrench = ...MAP...; // a correct answer to part (b) above
2 MutInfoEntry train = new MutInfoEntry("MONTREAL");
3 train.nextStatus(); // returns ""
4 train.map(toFrench);
5 train.setStatuses(List.of("ON TIME","11:05 AM"));
6 train.nextStatus(); // returns "A LHEURE"
7 train.nextStatus(); // returns "11:05 AM"
8 train.setStatuses(List.of("CANCELED"));
9 train.nextStatus(); // returns "SUPPRIME"

(d) What kind(s) of operation is MutInfoEntry.map? Leave extra boxes blank:

To implement map, the rep of MutInfoEntry now has a third field:

private Function<String, String> f;

and its abstraction function is (only relevant parts shown):

AF(destination, statuses, f) = the info board entry with current status f(statuses[0])
and looping through future statuses f(statuses[1]), ..., f(statuses[statuses.length-1]),
f(status[0]), and so on... [rest of AF elided]

The MutInfoEntry methods are implemented to obey this AF and behave as shown in the code above.

(e) Write a Java lambda expression for the initial value of f for a new MutInfoEntry object.

(f) During which of the numbered lines in the example code above is the toFrench function called? List
all line numbers that apply, or write NEVER if toFrench is never called. Note that this question is asking
about toFrench.

(g) What should MutInfoEntry’s rep invariant comment say about f? Note that this question is asking
about f.

“quiz2” — 2019/12/4 — 16:22 — page 9 — #9

Quiz 2 (December 3, 2019) Your Kerberos username: 9

You may detach this page. Write your username at the top, and hand in all pages when you leave.

/**
* An information board entry that shows a destination (e.g. "WASHINGTON DC")

* and cycles through a list of 1 to 4 statuses (e.g. ["11:05 AM", "ON TIME"],

* or ["NOW BOARDING", "TRACK 3"]).

*
* A valid destination is up to 16 characters, consisting only of

* upper-case letters A-Z, digits, colons, or spaces.

*
* A valid status is up to 12 characters, consisting only of

* upper-case letters A-Z, digits, colons, or spaces.

*/
public class MutInfoEntry {

private final String destination;
private List<String> statuses = Collections.synchronizedList(new ArrayList<String>());

// Abstraction function:
// <elided>
// Rep invariant:
// - destination is a valid destination (defined above)
// - statuses has 1-4 elements, each of which is a valid status (defined above)

/** Create a new information board entry with the given destination and

* a single empty status.

* @param destination a valid destination (defined above) */
public MutInfoEntry(String destination) {

this.destination = destination;
statuses.add("");

}

/** @return the destination */
public String destination() { return destination; }

/** @return the next status to display, infinitely cycling through this

* info board entry’s statuses in order */
public String nextStatus() {

final String status = statuses.remove(0);
statuses.add(status); // put it back on end so that statuses cycle forever
return status;

}

/** Set the statuses. The first status in the list will be displayed next.

* @param statuses new statuses, a 1- to 4-item list of valid statuses */
public void setStatuses(List<String> statuses) {

this.statuses.clear();
this.statuses.addAll(statuses);

}
}

“quiz2” — 2019/12/4 — 16:22 — page 10 — #10

10 Your Kerberos username: Quiz 2 (December 3, 2019)

You may detach this page. Write your username at the top, and hand in all pages when you leave.

/**
* An information board entry that shows a destination (e.g. "WASHINGTON DC")

* and current status (e.g. "DELAYED") in a cycle of 1 to 4 statuses

* (e.g. ["DELAYED", "NEW DEPRTURE", "11:55 AM"]).

*
* A valid destination is up to 16 characters, consisting only of

* upper-case letters A-Z, digits, colons, or spaces.

*
* A valid status is up to 12 characters, consisting only of

* upper-case letters A-Z, digits, colons, or spaces.

*/
public interface ImInfoEntry {

/** @return the destination */
public String destination();

/** @return the currently-shown status */
public String status();

/** @return the entry with the same destination and statuses,

* showing the next status in the cycle */
public ImInfoEntry nextEntry();

/** @return number of statuses in the cycle, from 1 to 4 */
public int size();

/** @param entry information board entry represented as a string according

* to the grammar in Problem 3

* @return corresponding information board entry value */
public static ImInfoEntry parse(String entry) { ... }

}

	Problem 1
	Problem 2
	Problem 3
	Problem 4

