
“quiz1” — 2019/10/22 — 12:11 — page 1 — #1

MIT
6.031: Software Construction
Max Goldman and Prof. Rob Miller revised Tuesday 22nd October, 2019, 12:11

Quiz 1 (October 23, 2019)

Your name:

Your Kerberos username:

You have 50 minutes to complete this quiz. It contains 10 pages (including this page) for a total
of 100 points.

The quiz is closed-book and closed-notes, but you are allowed one two-sided page of notes.

Please check your copy to make sure that it is complete before you start. Turn in all pages,
together, when you finish. Before you begin, write your Kerberos username on the top of every
page.

Please write neatly. No credit will be given if we cannot read what you write.

For questions which require you to choose your answer(s) from a list, do so clearly and unam-
biguously by circling the letter(s) or entire answer(s). Do not use check marks, underlines, or
other annotations – they will not be graded.

Good luck!

Problem Points

1: Operations 16

2: Implementations 12

3: Specifications 24

4: Tests 24

5: Abstractions 24

Total 100

“quiz1” — 2019/10/22 — 12:11 — page 2 — #2

2 Your Kerberos username: Quiz 1 (October 23, 2019)

Train stations, airports, and other transit hubs often have displays that show upcoming departures or arrivals
along with other information: a track or gate number, delays, cancellations, etc.

For this quiz, an information board is made of several information board entries. Each entry has limited
space: 16 characters to display a destination and 12 characters for a status. Both are restricted to upper-case
letters, digits, colons, and spaces. For example, a board with three entries:

WASHINGTON DC 11:05 AM
LONDON HEATHROW 11:55 AM
HONG KONG DELAYED

In order to show more information, the board cycles each entry through a looping sequence of up to four
statuses. For example, if WASHINGTON DC and LONDON HEATHROW have 2-status loops, and HONG
KONG has a 3-status loop, then every few seconds the board will update:

WASHINGTON DC ON TIME
LONDON HEATHROW ON TIME
HONG KONG NEW DEPRTURE

WASHINGTON DC 11:05 AM
LONDON HEATHROW 11:55 AM
HONG KONG 1:40 PM

WASHINGTON DC ON TIME
LONDON HEATHROW ON TIME
HONG KONG DELAYED

WASHINGTON DC 11:05 AM
LONDON HEATHROW 11:55 AM
HONG KONG NEW DEPRTURE

WASHINGTON DC ON TIME
LONDON HEATHROW ON TIME
HONG KONG 1:40 PM

. . . and so on.

Problems 1–3 in this quiz refer to the code for mutable MutInfoEntry starting on page 9. After construct-
ing a new MutInfoEntry, the client sets the destination and status cycle. For example:

MutInfoEntry train6031 = new MutInfoEntry();
train6031.setDestination("WASHINGTON DC");
train6031.setStatuses(List.of("11:05 AM", "ON TIME"));

Problems 4–5 refer to the code for immutable ImInfoEntry on page 10. You may detach the code pages.

“quiz1” — 2019/10/22 — 12:11 — page 3 — #3

Quiz 1 (October 23, 2019) Your Kerberos username: 3

Problem 1 (Operations) (16 points).
Using MutInfoEntry from page 9 and train6031 as defined in the quiz intro. . .

A client calls train6031.setStatuses(Collections.emptyList()).

(a) Why is this incorrect? State a clear and specific reason in one sentence.

(b) Referring to the spec: will this call to setStatuses(..) throw an exception?

Circle: YES / MAYBE / NO

(c) Referring to the code: will this call to setStatuses(..) throw an exception?

Circle: YES / MAYBE / NO

(d) And given the provided code: after that call, which operation of train6031 will no longer work?

(e) Of the four kinds of ADT operations, what kind(s) of operation is that? Leave extra boxes blank:

(f) What will now happen when you call that operation? State a clear and specific result in one sentence.

(g) Why is that result incorrect? State a clear and specific reason in one sentence.

“quiz1” — 2019/10/22 — 12:11 — page 4 — #4

4 Your Kerberos username: Quiz 1 (October 23, 2019)

Problem 2 (Implementations) (12 points).
Compare each buggy setStatuses(..) implementation below to the original code in MutInfoEntry
on page 9.

(a)

public void setStatuses(List<String> statuses) {

this.statuses = statuses; // oops, buggy line!

this.iterator = this.statuses.iterator();
}

The rep invariant of MutInfoEntry is not provided, but you can infer it from the original code. Give a state-
ment from the rep invariant that a client, without violating the spec, can now break using setStatuses(..):

Explain in one clear example how they will break the rep invariant, without violating the spec:

(b)

public void setStatuses(List<String> statuses) {
this.statuses = List.copyOf(statuses); // returns an unmodifiable copy

// oops, missing line!

}

Give a statement from the rep invariant that a client, without violating the spec, will now break:

Explain in one clear example how they will break the rep invariant, without violating the spec:
(you can use train6031 from the quiz intro in your example)

“quiz1” — 2019/10/22 — 12:11 — page 5 — #5

Quiz 1 (October 23, 2019) Your Kerberos username: 5

Problem 3 (Specifications) (24 points).
Compare each new setStatuses(..) spec below to the original spec in MutInfoEntry on page 9.
Differences are in bold.

(a)

/** Set the statuses to a single empty status if the given list is empty;

* otherwise set the statuses to the given list, and the first status in the

* list will be displayed next.

* @param statuses new statuses, a list of at most 4 strings of at most

* 12 upper-case letters, digits, colons, and spaces each */

This spec’s precondition is. . .
Circle one: STRONGER than / WEAKER than / the SAME as / INCOMPARABLE to the original

This spec overall is. . .
Circle one: STRONGER than / WEAKER than / the SAME as / INCOMPARABLE to the original

If the overall specs are different, give an example input that demonstrates the difference:

(b)

/** Set the statuses. The first status in the list will be displayed next.

* @param statuses new statuses, a 4-item list of strings of at most

* 12 upper-case letters, digits, colons, and spaces each */

This spec’s precondition is. . .
Circle one: STRONGER than / WEAKER than / the SAME as / INCOMPARABLE to the original

This spec overall is. . .
Circle one: STRONGER than / WEAKER than / the SAME as / INCOMPARABLE to the original

If the overall specs are different, give an example input that demonstrates the difference:

(c)

/** Set the statuses. The last status in the list will be displayed next.

* @param statuses new statuses, a 1- to 4-item list of strings of at most

* 12 upper-case letters, digits, colons, and spaces each */

This spec’s precondition is. . .
Circle one: STRONGER than / WEAKER than / the SAME as / INCOMPARABLE to the original

This spec overall is. . .
Circle one: STRONGER than / WEAKER than / the SAME as / INCOMPARABLE to the original

If the overall specs are different, give an example input that demonstrates the difference:

“quiz1” — 2019/10/22 — 12:11 — page 6 — #6

6 Your Kerberos username: Quiz 1 (October 23, 2019)

Problem 4 (Tests) (24 points).
Start building a testing strategy for ImInfoEntry on page 10.

(a) Give a valid but useless partition, with at least 2 subdomains, of the destination input to the
ImInfoEntry constructor. Write one subdomain per box, and leave extra boxes blank:

And say why this partition is not useful:

(b) Give an excellent partition of the destination input to the ImInfoEntry constructor. Write one
subdomain per box, and leave extra boxes blank:

And say why this partition is useful:

(c) What is the type signature of the nextEntry operation? Input(s) on the left, output(s) on the right:

→

(d) What kind(s) of ADT operation is nextEntry()? Leave extra boxes blank:

(e) Give an excellent partition of the input(s) to nextEntry(). Write your partition in terms of the abstract
value, not the rep. Write one subdomain per box, and leave extra boxes blank:

“quiz1” — 2019/10/22 — 12:11 — page 7 — #7

Quiz 1 (October 23, 2019) Your Kerberos username: 7

Problem 5 (Abstractions) (24 points).
Looking at immutable ImInfoEntry on page 10, the current implementation rotates the items in statuses,
which means every ImInfoEntry in a cycle uses a different list. Change the implementation so that
ImInfoEntry instances that are part of the same cycle can share one statuses list:

(a) Write an excellent declaration for a third field in the rep of ImInfoEntry:

And use that field to implement a new private constructor, status(), and nextEntry().
You may assume the public constructor is updated correctly as well.

private ImInfoEntry(String destination, List<String> statuses,) {

this.destination = destination;
this.statuses = statuses;

this. = ;

checkRep();
}

public String status() { return ; }

public ImInfoEntry nextEntry() {
return new ImInfoEntry(destination, statuses,

);

}

(b) Write the strongest assertion you can include in checkRep() to constrain the new field:

(c) Write a complete, correct abstraction function for your new rep and implementation:

AF(destination, statuses,) =

continued on next page →

“quiz1” — 2019/10/22 — 12:11 — page 8 — #8

8 Your Kerberos username: Quiz 1 (October 23, 2019)

Suppose we implement sameValue(..) by comparing the outputs of the destination() and status()
methods for equality:

return destination().equals(that.destination()) && status().equals(that.status());

(d) Does equals(..) using this sameValue(..) define an equivalence relation? Circle: YES / NO

If no, which of the three properties of an equivalence relation does it violate?

(e) Explain in one clear example why this implementation violates observational equality. Give a specific
observation or observations clients can make that disagrees with equals(..):

“quiz1” — 2019/10/22 — 12:11 — page 9 — #9

Quiz 1 (October 23, 2019) Your Kerberos username: 9

You may detach this page. Write your username at the top, and hand in all pages when you leave.

1 /** An information board entry that shows a destination (e.g. "WASHINGTON DC")
2 * and cycles through a list of 1 to 4 statuses (e.g. ["11:05 AM", "ON TIME"],
3 * or ["NOW BOARDING", "TRACK 3"]).
4 * Destinations are limited to 16 characters, and each status to 12 characters.
5 * They may only contain upper-case letters A-Z, digits, colons, and spaces. */
6 public class MutInfoEntry {

7 private String destination;
8 private List<String> statuses;
9 private Iterator<String> iterator;

10 /** Create a new information board entry with empty destination and
11 * a single empty status. */
12 public MutInfoEntry() {
13 destination = "";
14 statuses = List.of("");
15 iterator = statuses.iterator();

}

16 /** @return the destination */
17 public String destination() { return destination; }

18 /** @return the next status to display, infinitely cycling through this
19 * info board entry’s statuses in order */
20 public String nextStatus() {
21 if (! iterator.hasNext()) {
22 // iterator.next() would throw a NoSuchElementException, so
23 // loop around by getting a fresh iterator for the statuses
24 iterator = statuses.iterator();

}
25 return iterator.next();

}

26 /** Set the destination.
27 * @param destination new destination, a string of at most 16 upper-case
28 * letters, digits, colons, and spaces */
29 public void setDestination(String destination) {
30 this.destination = destination;

}

31 /** Set the statuses. The first status in the list will be displayed next.
32 * @param statuses new statuses, a 1- to 4-item list of strings of at most
33 * 12 upper-case letters, digits, colons, and spaces each */
34 public void setStatuses(List<String> statuses) {
35 this.statuses = List.copyOf(statuses); // returns an unmodifiable copy
36 this.iterator = this.statuses.iterator();

}
}

“quiz1” — 2019/10/22 — 12:11 — page 10 — #10

10 Your Kerberos username: Quiz 1 (October 23, 2019)

You may detach this page. Write your username at the top, and hand in all pages when you leave.

1 /** An information board entry that shows a destination (e.g. "WASHINGTON DC")
2 * and current status (e.g. "DELAYED") in a cycle of up to 4 statuses
3 * (e.g. ["DELAYED", "NEW DEPRTURE", "11:55 AM"]).
4 * Destinations are limited to 16 characters, and each status to 12 characters.
5 * They may only contain upper-case letters A-Z, digits, colons, and spaces. */
6 class ImInfoEntry {

7 private final String destination;
8 private final List<String> statuses;

9 /** Create a new information board entry.
10 * @param destination the destination, a string of at most 16 upper-case
11 * letters, digits, colons, and spaces
12 * @param statuses statuses, a 1- to 4-item list of strings of at most
13 * 12 upper-case letters, digits, colons, and spaces each,
14 * where statuses[0] is the status of this info board
15 * entry; statuses[1] is the status shown next; and so on */
16 public ImInfoEntry(String destination, List<String> statuses) {
17 this.destination = destination;
18 this.statuses = List.copyOf(statuses); // returns an unmodifiable copy
19 checkRep();

}

20 private void checkRep() { ... }

21 /** @return the destination */
22 public String destination() { return destination; }

23 /** @return the currently-shown status */
24 public String status() { return statuses.get(0); }

25 /** @return the entry with the same destination and statuses,
26 * showing the next status in the cycle */
27 public ImInfoEntry nextEntry() {
28 List<String> rotated = new ArrayList<>(statuses);
29 rotated.add(rotated.remove(0)); // move first status to last
30 return new ImInfoEntry(destination, rotated);

}

31 @Override public boolean equals(Object obj) {
32 return obj instanceof ImInfoEntry && sameValue((ImInfoEntry)obj);

}

33 private boolean sameValue(ImInfoEntry that) { return ...; }

34 @Override public int hashCode() {
35 return Objects.hash(destination(), status());

}
}

	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

