
“quiz1” — 2017/10/24 — 15:03 — page 1 — #1

MIT
6.031: Software Construction
Prof. Rob Miller & Max Goldman revised Tuesday 24th October, 2017, 15:03

Quiz 1 (October 25, 2017)

Your name:

Your Kerberos username:

You have 50 minutes to complete this quiz. It contains 10 pages (including this page) for a total
of 100 points.

The quiz is closed-book and closed-notes, but you are allowed one two-sided page of notes.

Please check your copy to make sure that it is complete before you start. Turn in all pages,
together, when you finish. Before you begin, write your Kerberos username on the top of every
page.

Please write neatly. No credit will be given if we cannot read what you write.

For questions which require you to choose your answer(s) from a list, do so clearly and unam-
biguously by circling the letter(s) or entire answer(s). Do not use check marks, underlines, or
other annotations – they will not be graded.

Good luck!

Problem Points

1: Code review 20

2: Equality 16

3: Immutable ADT 22

4: Mutable ADT 18

5: Testing and Operations 24

Total 100

“quiz1” — 2017/10/24 — 15:03 — page 2 — #2

2 Your Kerberos username: Quiz 1 (October 25, 2017)

For this quiz, a shopping list is an ordered list of unique items together with a positive integer quantity
for each item (we will not consider units for quantities, e.g. 1 oz. vs. 1 lb. vs. 1 box, just a number).

For example, someone who plans to buy a gallon of milk, a small bunch of bananas, and a box of Klondike
bars, might have this shopping list:

• Milk (1)
• Banana (3)
• Klondike bars (1)

Shopping lists are ordered, so the following is a different shopping list. It has the same items and
quantities, but in a different order:

• Banana (3)
• Klondike bars (1)
• Milk (1)

This is not a shopping list:

• Banana (1)
• Banana (1)
• Banana (1)
• Klondike bars (1)
• Milk (1)

And neither is this:

• Milk (0)

Problems 1–3 refer to the code for FixedShoppingList on page 9, which you may detach.
A client uses FixedShoppingList like this:

FixedShoppingList s = new FixedShoppingList(Arrays.asList(
"Banana",
"Milk",
"Banana",
"Klondike bars",
"Banana"));

System.out.println(s);

which produces:

Banana (3)
Milk (1)
Klondike bars (1)

Notice that the bananas have ended up first on this list, and the Klondike bars have ended up last.

“quiz1” — 2017/10/24 — 15:03 — page 3 — #3

Quiz 1 (October 25, 2017) Your Kerberos username: 3

Problem 1 (Code review) (20 points).
For each of these code review comments on FixedShoppingList, circle AGREE or DISAGREE and
explain why in one sentence.

(a) Line 21: in toString(), reduce the scope of seen.

AGREE / DISAGREE because:

(b) Lines 21–22: in toString(), make seen and result final.

AGREE / DISAGREE because:

(c) Line 3: declare replist as private.

AGREE / DISAGREE because:

(d) Line 3: declare replist as final.

AGREE / DISAGREE because:

(e) Line 6: in the constructor, just use Collections.unmodifiableList(items) instead of
new ArrayList<>(items).

AGREE / DISAGREE because:

“quiz1” — 2017/10/24 — 15:03 — page 4 — #4

4 Your Kerberos username: Quiz 1 (October 25, 2017)

Problem 2 (Equality) (16 points).
Alyssa looks at FixedShoppingList and realizes that it should implement equals().

She also sees that that just checking whether two FixedShoppingList instances have identical rep
values will not be a correct implementation.

(a) Write two different rep values for FixedShoppingList that represent the same abstract value accord-
ing to the code and specs given (e.g., toString):

(b) And write clearly and completely their abstract value:

Suppose we implement equals() correctly, and now wish to implement hashCode(). Remember that
if two objects are equal, then they must have the same hashcode. For each option below for the body of
hashCode(), circle CORRECT or INCORRECT and explain why in one sentence.

(c) return replist.hashCode();

CORRECT / INCORRECT because:

(d) if (replist.isEmpty()) { return 0; }
else { return replist.get(0).hashCode(); }

CORRECT / INCORRECT because:

“quiz1” — 2017/10/24 — 15:03 — page 5 — #5

Quiz 1 (October 25, 2017) Your Kerberos username: 5

Problem 3 (Immutable ADT) (22 points).

Reminder: please write neatly. Make sure each answer satisfies all the requirements of the question.

(a) Write an abstraction function for FixedShoppingList that works with the code and specs given.

(b) Write requires and effects to create a stronger spec for withAnother() (compared to the one in the
code, lines 7–8) that is still satisfied by the given implementation.

In addition, your spec must allow this as a valid test case:

[Milk (1)].withAnother("Cookies") = [Milk (1), Cookies (1)]

where we check the items, their order, and their quantities in the result.

(c) Write requires and effects to create a weaker spec for howMany() (compared to the one in the code,
lines 12–13) that is still satisfied by the given implementation.

In addition, your spec must allow this as a valid test case:

[Milk (1)].howMany("Milk") = 1

“quiz1” — 2017/10/24 — 15:03 — page 6 — #6

6 Your Kerberos username: Quiz 1 (October 25, 2017)

Problem 4 (Mutable ADT) (18 points).

Problems 4–6 refer to the code for MutableShoppingList on page 10.
A client uses MutableShoppingList like this:

MutableShoppingList m = new MutableShoppingList();
m.another("Banana");
m.another("Milk");
m.another("Banana");
m.another("Klondike bars");
m.another("Banana");
System.out.println(m);

which produces:

Banana (3)
Klondike bars (1)
Milk (1)

Ben looks at MutableShoppingList. “Alyssa, how does this TreeMap work?”
“It keeps its keys sorted in alphabetical order.”
“OK,” says Ben.

(a) Write requires and effects to create a stronger spec for the MutableShoppingList() constructor
(compared to the one in the code, lines 4–5) that is still satisfied by the given implementation.

(b) Write one statement to include in the rep invariant for MutableShoppingList that works with the
code and specs given, and that 6.031 does not already assume implicitly.

(c) And write one piece of the rep invariant that 6.031 does already assume implicitly.

“quiz1” — 2017/10/24 — 15:03 — page 7 — #7

Quiz 1 (October 25, 2017) Your Kerberos username: 7

Problem 5 (Testing and Operations) (24 points).
Alyssa looks at MutableShoppingList. “This howMany method has a bug! Did anyone test this thing?”

Devise a testing strategy for the howMany() operation:
(a) Write one good three-part partition on the method’s implicit input only, ignoring item.

(b) Write one good three-part partition on the relationship between the method’s two inputs.

MutableShoppingList uses SortedMap and TreeMap.

(c) In one sentence, what is the relationship between the types SortedMap and TreeMap?

(d) In one sentence, what is the relationship between the specs of SortedMap and TreeMap?

One creator ADT operation used in the MutableShoppingList code is the TreeMap constructor (line 6).

For each other kind of ADT operation in our taxonomy, give an example that is either defined or used in
the MutableShoppingList code. Write the operation’s type signature in function notation with its name,
inputs, and outputs.

Creator: TreeMap : void → TreeMap

(e) Producer:

: →

(f) Observer:

: →

(g) Mutator:

: →

“quiz1” — 2017/10/24 — 15:03 — page 8 — #8

8 Your Kerberos username: Quiz 1 (October 25, 2017)

SFB
ETU
RFC

“quiz1” — 2017/10/24 — 15:03 — page 9 — #9

Quiz 1 (October 25, 2017) Your Kerberos username: 9

You may detach this page. Write your username at the top, and hand in all pages when you leave.

Immutable FixedShoppingList

1 /** Immutable shopping list. */
2 public class FixedShoppingList {

3 List<String> replist;

4 /** Make a new shopping list. */
5 public FixedShoppingList(List<String> items) {
6 replist = new ArrayList<>(items);

}

7 /** Make a new shopping list that includes itemToAdd. */
8 public FixedShoppingList withAnother(String itemToAdd) {
9 List<String> items = new ArrayList<>(replist);

10 items.add(itemToAdd);
11 return new FixedShoppingList(items);

}

12 /** Return the quantity of item on this list. */
13 public int howMany(String item) {
14 int count = 0;
15 for (String listItem : replist) {
16 if (item.equals(listItem)) { count++; }

}
17 return count;

}

18 /** Return a string where the items on this list appear in order,
19 * each on a separate line along with its quantity. */
20 @Override public String toString() {
21 Set<String> seen = new HashSet<String>();
22 StringBuilder result = new StringBuilder();
23 for (String item : replist) {
24 if (! seen.contains(item)) {
25 seen.add(item);
26 result.append(item + " (" + howMany(item) + ")\n");

}
}

27 return result.toString();
}

}

“quiz1” — 2017/10/24 — 15:03 — page 10 — #10

10 Your Kerberos username: Quiz 1 (October 25, 2017)

You may detach this page. Write your username at the top, and hand in all pages when you leave.

Mutable MutableShoppingList

1 /** Mutable shopping list. */
2 public class MutableShoppingList {

3 SortedMap<String, Integer> itemCounts;

4 /** Make a new shopping list. */
5 public MutableShoppingList() {
6 itemCounts = new TreeMap<>();

}

7 /** Add 1 of the given item to this list. */
8 public void another(String item) {
9 itemCounts.put(item, itemCounts.getOrDefault(item, 0) + 1);

}

10 /** Return the quantity of item on this list. */
11 public int howMany(String item) {
12 return itemCounts.get(item); // BUG!

}

13 /** Return a string where the items on this list appear in order,
14 * each on a separate line along with its quantity. */
15 @Override public String toString() {
16 StringBuilder result = new StringBuilder();
17 for (String item : itemCounts.keySet()) {
18 result.append(item + " (" + howMany(item) + ")\n");

}
19 return result.toString();

}
}

	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

