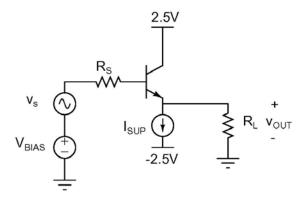

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.012 Microelectronic Devices and Circuits Spring 2007

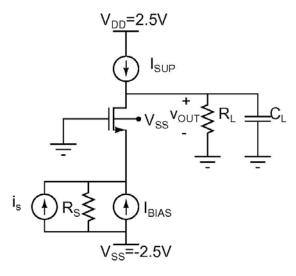
Homework #8 – Due May 11, 2007


Problem 1:

Device Parameters	
I _{SUP} =100uA	$I_{\rm S}=10^{-15}{\rm A}$
$R_S=5k\Omega$	$\beta_F = \beta_o = 100$
$R_L=10k\Omega$	$V_A=100V$
$r_{oc} = \infty$	f _T =1GHz @ I _C =100uA
	$C_{\mu}=0.1 pF$

- a.) Calculate V_{BIAS} such that $V_{\text{OUT}}=0V$.
- b.) Calculate the low frequency loaded voltage gain $v_{\text{out}}/v_{\text{s}}$.
- c.) Calculate C_{π} from the device data.
- d.) Use the Miller approximation to calculate ω_{3db} .
- e.) Use the open-circuit time constant method to calculate ω_{3db} .

Problem 2:



Device Parameters	
$R_L=25k\Omega$	$C_{je0}=100fF$
$R_S=5k\Omega$	$\tau_F=100 \mathrm{ps}$
$I_{S}=10^{-15}A$	$C_{\mu 0} = 200 fF$
$\beta_F = \beta_o = 100$	$r_{oc} = \infty$
$V_A=100V$	$\Phi_{\rm Bc} = 0.75 \text{V}$

In the previous problem, the high source resistance lowered ω_{3db} . One method of improving the frequency response is to precede the common emitter stage with an emitter-follower stage.

- a.) Find I_{SUP} for the emitter follower such that its R_{out} equals 100Ω .
- b.) Calculate V_{BIAS} such that $V_{OUT}=0V$.
- c.) Calculate C_π and C_μ from the device data for the emitter-follower.
- d.) Use the open-circuit time constant method to calculate ω_{3db} for the emitter-follower.

Problem 3:

Device Parameters	
$R_S=100k\Omega$	$\mu_n C_{ox} = 50 uA/V^2$
$R_L=1k\Omega$	$C_{ox}=2.3 fF/um^2$
$r_{oc} = \infty$	$C_{Jn}=0.1 fF/um^2$
$V_{Tn}=1V$	C _{JSWn} =0.5fF/um
$\lambda_n = 0.05 V^{-1}$	L _{diffn} =6um
$C_L=0.5pF$	$C_{ov}=0.5 fF/um$

The frequency response of the NMOS common-gate amplifier depends on g_m , C_{gs} , C_{gd} , and C_L . One method of increasing g_m is to increase the bias current. Another method of increasing g_m is to increase the W of the device. However, as the width of the device is increased, the parasitic capacitances also increase. For this problem, include C_{db} , but neglect the backgate effect. Assume that the amplifier is biased such that V_{OUT} =0V.

- a.) Use the open-circuit time constant method to derive an expression for ω_{3db} for the common-gate amplifier including C_L .
- b.) Use Matlab or Excel to plot ω_{3db} vs. I_{SUP} for $50uA < I_{SUP} < 500uA$. Use W/L=50um/2um.
- c.) What is the effect of increasing I_{SUP} (for a constant W) on the frequency response of this amplifier? What are some potential drawbacks of this approach?