Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.012 Microelectronic Devices and Circuits Spring 2007 February 14, 2007 - Homework #1 Due - February 21, 2007

Problem 1

A piece of silicon is doped with $N_a = 2 \times 10^{15} \text{ cm}^{-3}$ and $N_d = 1 \times 10^{15} \text{ cm}^{-3}$

- a) What is the majority carrier? Is the silicon type n or type p?
- b) Find the electron and hole concentration and mobility at room temperature.
- c) We want increase the electron concentration to 1×10^{17} cm⁻³. What is the additional dopant type and concentration? What is the new electron mobility?

Problem 2

A piece of silicon is doped with $N_d = 1 \times 10^{15} \text{ cm}^{-3}$. Below is a table for the intrinsic electron concentration for three different temperatures.

n _i	Temperature
$1 \times 10^{10} \text{ cm}^{-3}$	300 K (room temp.)
$1 \times 10^{15} \text{ cm}^{-3}$	600 K
$1 \times 10^{17} \text{ cm}^{-3}$	1150 K

Calculate the total hole and electron concentration for all three temperatures.

Problem 3

Given a uniformly n-type ion-implanted layer with thickness t = 1 um and doping concentration $N_d = 10^{17}$ cm⁻³.

- a) What is the sheet resistance?
- b) What is the resistance of the layout shown below? Assume that the contacts each contribute .65 squares.

c) By adding additional dopants, we make a new n-type ion-implanted resistor with an average doping concentration $N_{dI} = 2 \times 10^{17}$ cm⁻³ over the depth $0 < d < 0.5 \mu m$ and $N_{d2} = 10^{17}$ cm⁻³ over the depth 0.5 $\mu m < d < 1 \mu m$. Find the new sheet resistance.

Problem 4

A slab of silicon has the following electron distribution.

- scales are linear
 - a) Assume thermal equilibrium. Plot the potential ϕ as a function of x.
 - b) What is the electron diffusion current density? Hole diffusion current density? Assume D_n = 2 x D_p = 26 cm²/s
 c) The hole and electron diffusion current densities do not sum to zero; however, the
 - c) The hole and electron diffusion current densities do not sum to zero; however, the silicon cannot have a net current since it is an open circuit. Explain what is happening.

