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Lecture 5
PN Junction and MOS 

Electrostatics(II)

PN JUNCTION IN THERMAL EQUILIBRIUM

Outline

1. Introduction
2. Electrostatics of pn junction in thermal 

equilibrium
3. The depletion approximation
4. Contact potentials

Reading Assignment:
Howe and Sodini, Chapter 3, Sections 3.3-3.6
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1. Introduction
• pn junction

– p-region and n-region in intimate contact

Why is the p-n junction worth studying?

It is present in virtually every semiconductor device!

Example: CMOS cross-section

Understanding the pn junction is essential to 
understanding transistor operation
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2. Electrostatics of p-n junction in equilibrium

Focus on intrinsic region:

Doping distribution of an abrupt p-n junction
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What is the carrier concentration 
distribution in thermal equilibrium?

First think of the two sides separately:

Now bring the two sides together. 

What happens?
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Resulting carrier concentration profile in 
thermal equilibrium:

• Far away from the metallurgical junction: nothing 
happens
– Two quasi-neutral regions

• Around the metallurgical junction: diffusion of 
carriers must counter-balance drift
– Space-charge region
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On a linear scale:

We can divide semiconductor into three regions

• Two quasi-neutral n- and p-regions (QNR’s)
• One space-charge region (SCR)

Now, we want to know no(x), po(x), ρ(x), E(x) and φ(x).

We need to solve Poisson’s equation using a simple 
but powerful approximation

Thermal equilibrium: balance between drift and diffusion

Jn (x) = Jn
drift (x) + Jn

diff (x) = 0

Jp (x) = Jp
drift (x) + Jp

diff (x) = 0
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3. The Depletion Approximation
• Assume the QNR’s are perfectly charge neutral
• Assume the SCR is depleted of carriers 

– depletion region
• Transition between SCR and QNR’s sharp at

– -xpo and xno (must calculate where to place these)

x < −x po; po(x) = Na, no (x) =
ni

2

Na
−x po < x < 0; po (x), no(x) << Na

0 < x < xno ; no (x), po(x) << Nd

x > xno ; no (x) = Nd , po (x) =
ni

2

Nd
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Space Charge Density

ρ(x) = 0; x < −x po

= − qNa; −x po< x < 0

= qNd ; 0 < x < xno
= 0; x > xno
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Electric Field

x < − x po ; E(x) = 0

− x po < x < 0; E(x) − E(−x po ) =
1
εs

−qN a d ′ x 
− x po

x
∫

= −
qN a

εs
x

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

−x po

x
=

−qNa
εs

x + x po( )

0 < x < xno ; E(x) =
qN d

εs
x − xno( )

x > xno ; E(x) = 0

Integrate Poisson’s equation

E(x2 ) − E(x1) =
1
εs

ρ(x) dx
x1

x2

∫
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Electrostatic Potential
(with φ=0 @ no=po=ni)

φ =
kT
q

• ln no
ni

φ = −
kT
q

• ln po
ni

In QNRs, no and po are known ⇒ can determine φ

in p-QNR: po=Na ⇒

in n-QNR: no=Nd ⇒

φp = − kT
q

• ln Na
ni

φn =
kT
q

• ln Nd
ni

Built-in potential:

φB = φn − φ p =
kT
q

• ln
Nd Na

ni
2

This expression is always correct in TE! 
We did not use depletion approximation.
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To obtain φ(x) in between, integrate E(x)

φ(x2 ) − φ(x1) = − E( ′ x )d ′ x 
x1

x2

∫

x < −x po; φ(x) = φp

−x po< x < 0; φ(x) − φ(−x po ) = − −
qNa
εs

′ x + xpo( )d ′ x 
−xpo

x

∫

=
qNa
2εs

x + x po( )2

φ(x) = φp +
qNa
2εs

x + xpo( )2

0 < x < xno; φ(x) = φn −
qNd
2εs

x − xno( )2

x > xno; φ(x) = φn
Almost done ….



6.102 Spring 2007 Lecture 5 12

Still do not know xno and xpo ⇒ need two more equations

1. Require overall charge neutrality:

2. Require φ(x) to be continuous at x=0;

Two equations with two unknowns — obtain solution:

nodpoa xqNxqN =

22

22 no
s

d
npo

s

a
p xqNxqN

ε
φ

ε
φ −=+

( ) ( ) ada

dBs
po

dda

aBs
no NNNq

Nx
NNNq

Nx
+

=
+

=
φεφε 22

Now problem is completely solved!
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Solution Summary
Space Charge Density

Electrostatic Field

Electrostatic Potential
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Other results:

Width of the space charge region:

( )
da

daBs
nopodo NqN

NNxxx +
=+=

φε2

Field at the metallurgical junction:

( )das

daB
o NN

NNqE
+

=
ε

φ2
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Three Special Cases

• Symmetric junction: Na = Nd

• Asymmetric junction: Na > Nd

• Strongly asymmetric junction
– p+n junction: Na >> Nd

nopo xx =

nopo xx <

xpo << xno ≈ xdo ≈
2εsφB
qNd

Eo ≈
2qφBNd

εs

The lightly-doped side controls the electrostatics of 
the pn junction
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4. Contact Potential

Potential distribution in thermal equilibrium so far:

Question 1: If I apply a voltmeter across the pn junction 
diode, do I measure φB?

yes no it depends

Question 2: If I short terminals of pn junction diode, does 
current flow on the outside circuit?

yes no sometimes
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We are missing contact potential at the metal-
semiconductor contacts:

Metal-semiconductor contacts: junction of dissimilar 
materials
⇒ built-in potentials at contacts φmn and φmp.

Potential  difference across structure must be zero
⇒ Cannot measure φB.

φB = φmn + φmp
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5. PN Junction-Reverse Bias

xdo = xpo + xno =
2εs (φB − VD ) Na + Nd( )

qNa Nd

Assume: No Current Flows 

����
����

����
����

p

n

xn

Wn

−Wp

−xp

ohmic contact to
p side

ohmic contact
to n side

−xp xn

φj 

φp
φpm

φmn

φ(x)

φpm

φmn

φj

x

(a)

(b)

Wn

−Wp

φn

+

+

−

−

+

−

− 

+

− 

+

− 

+

+

− 

x

VD < 0 V

VD (< 0 V)

+

−

ID ≈ 0 A

Same Analysis applies:

Substitute 

φ j = φB − VD
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What did we learn today?

• Electrostatics of pn junction in equilibrium
– A space-charge region surrounded by two 

quasi-neutral regions formed.
• To first order, carrier concentrations in space-charge 

region are much smaller than the doping level
– ⇒ can use Depletion Approximation

• From contact to contact, there is no potential build-
up across the pn junction diode
– Contact potential(s).

Summary of Key Concepts


