Lecture 5 PN Junction and MOS Electrostatics(II)

PN JUNCTION IN THERMAL EQUILIBRIUM

Outline

- 1. Introduction
- 2. Electrostatics of pn junction in thermal equilibrium
- 3. The depletion approximation
- 4. Contact potentials

Reading Assignment:

Howe and Sodini, Chapter 3, Sections 3.3-3.6

1. Introduction

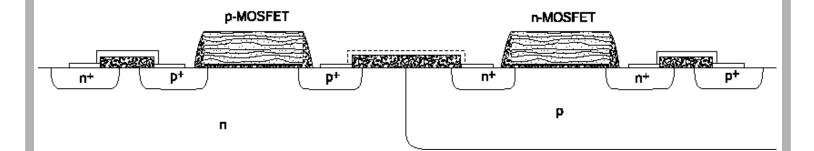
• pn junction

- p-region and n-region in intimate contact

Why is the p-n junction worth studying?

It is present in virtually every semiconductor device!

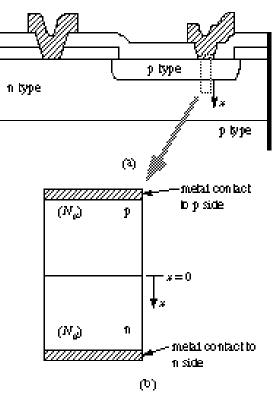
Example: CMOS cross-section



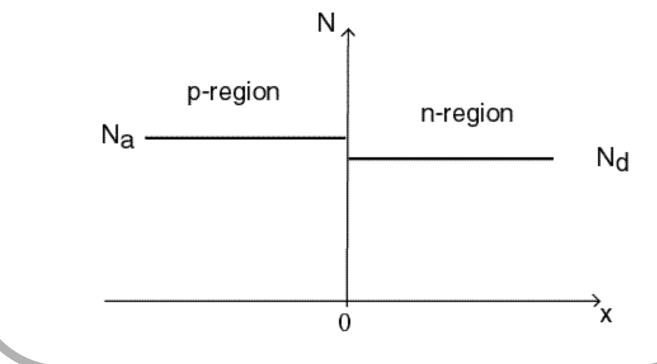
Understanding the pn junction is essential to understanding transistor operation

2. Electrostatics of p-n junction in equilibrium

Focus on intrinsic region:

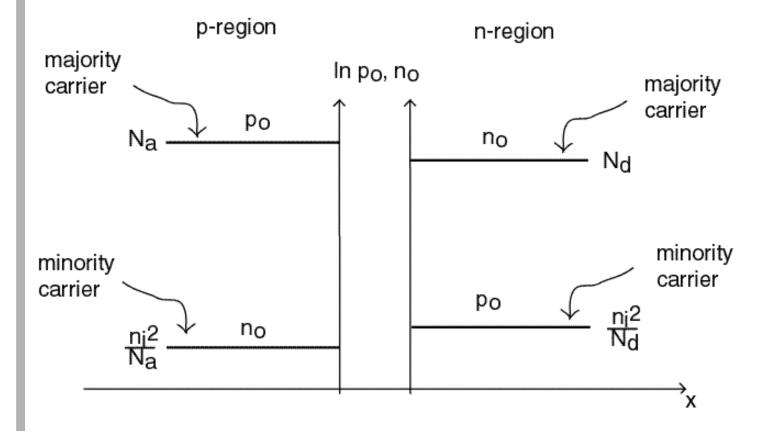


Doping distribution of an **<u>abrupt</u>** p-n junction



What is the carrier concentration distribution in thermal equilibrium?

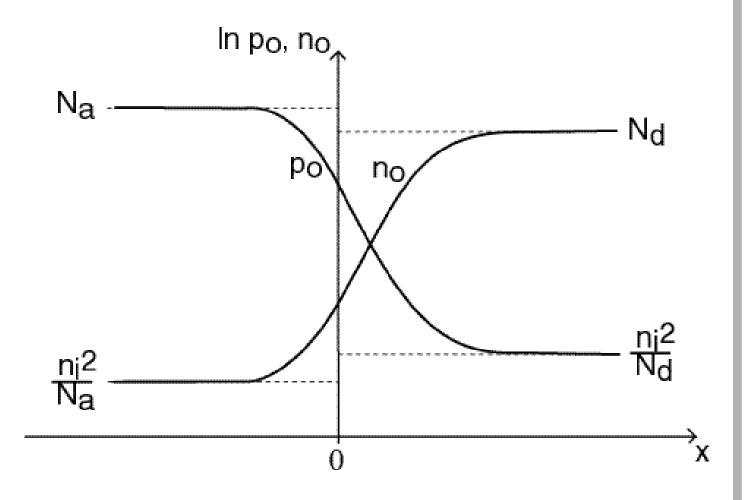
First think of the two sides separately:



Now bring the two sides together.

What happens?

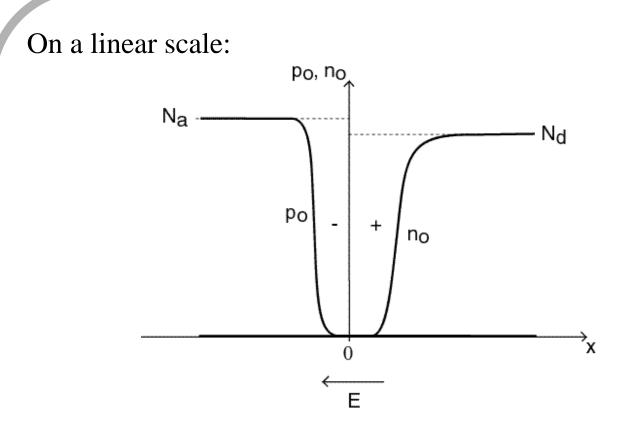
Resulting carrier concentration profile in thermal equilibrium:



• Far away from the metallurgical junction: nothing happens

- Two quasi-neutral regions

- Around the metallurgical junction: diffusion of carriers must counter-balance drift
 - Space-charge region



Thermal equilibrium: balance between drift and diffusion

$$J_n(x) = J_n^{drift}(x) + J_n^{diff}(x) = 0$$

$$J_p(x) = J_p^{drift}(x) + J_p^{diff}(x) = 0$$

We can divide semiconductor into three regions

- Two quasi-neutral n- and p-regions (QNR's)
- One space-charge region (SCR)

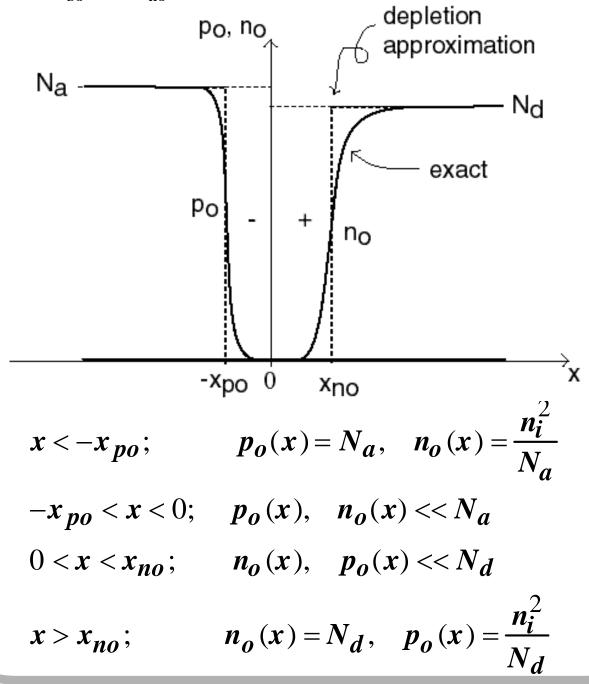
Now, we want to know $n_o(x)$, $p_o(x)$, $\rho(x)$, E(x) and $\phi(x)$.

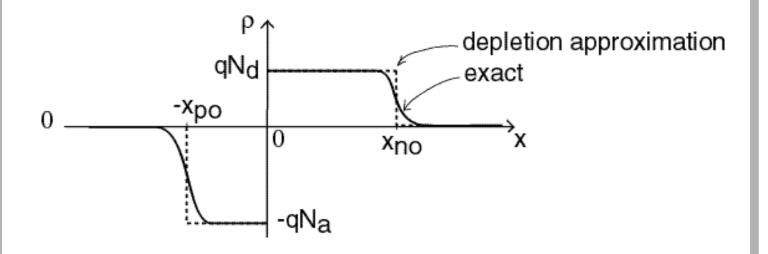
We need to solve Poisson's equation using a simple but powerful approximation

6.102 Spring 2007

3. The Depletion Approximation

- Assume the QNR's are perfectly charge neutral
- Assume the SCR is <u>depleted</u> of carriers
 - depletion region
- Transition between SCR and QNR's sharp at
 - $-x_{po}$ and x_{no} (must calculate where to place these)

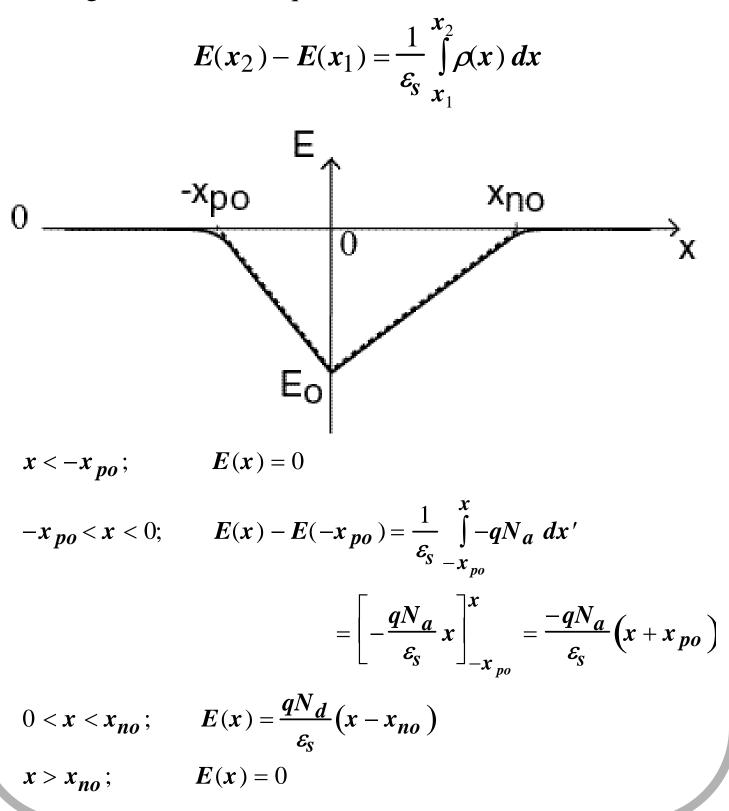




$$\begin{aligned}
 \rho(x) &= 0; & x < -x_{po} \\
 &= -qN_a; & -x_{po} < x < 0 \\
 &= qN_d; & 0 < x < x_{no} \\
 &= 0; & x > x_{no}
 \end{aligned}$$

Electric Field

Integrate Poisson's equation



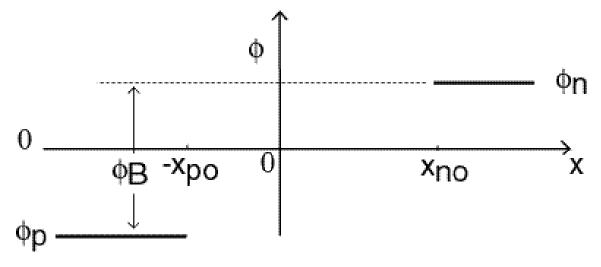
Electrostatic Potential (with $\phi=0 @ n_o=p_o=n_i$)

$$\phi = \frac{kT}{q} \bullet \ln \frac{n_o}{n_i} \qquad \phi = -\frac{kT}{q} \bullet \ln \frac{p_o}{n_i}$$

In QNRs, n_o and p_o are known \Rightarrow can determine ϕ

in p-QNR:
$$p_o = N_a \Rightarrow \phi_p = -\frac{kT}{q} \cdot \ln \frac{N_a}{n_i}$$

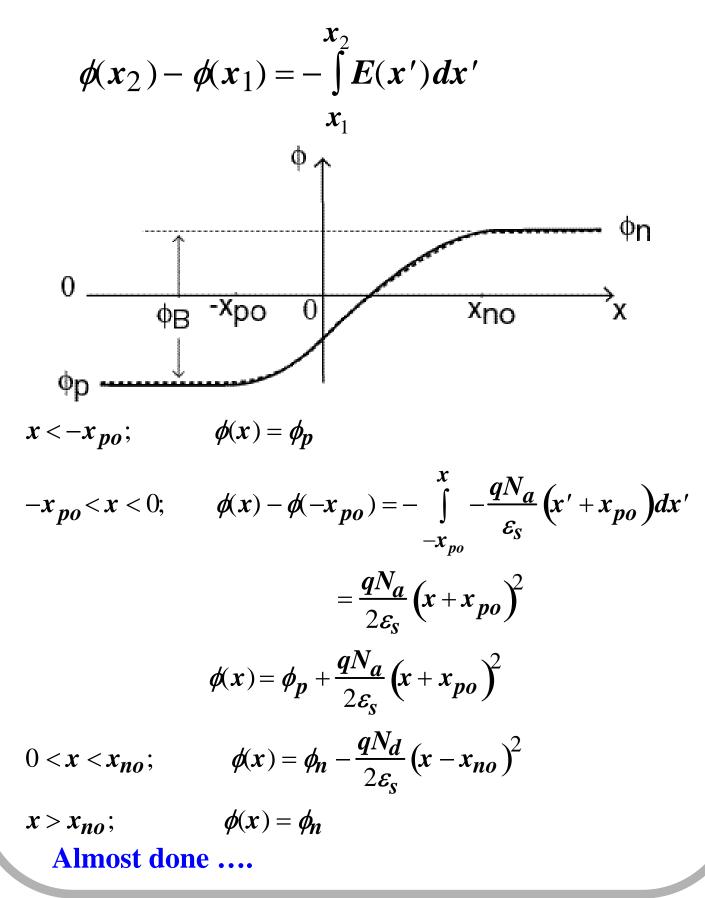
in n-QNR: $n_o = N_d \Rightarrow \phi_n = \frac{kT}{q} \cdot \ln \frac{N_d}{n_i}$



Built-in potential:

$$\phi_B = \phi_n - \phi_p = \frac{kT}{q} \cdot \ln \frac{N_d N_a}{n_i^2}$$

This expression is always correct in TE! We did not use depletion approximation. To obtain $\phi(x)$ in between, integrate E(x)



Still do not know x_{no} **and** $x_{po} \Rightarrow$ **need two more equations**

1. Require overall charge neutrality:

$$qN_a x_{po} = qN_d x_{no}$$

2. Require $\phi(x)$ to be continuous at x=0;

$$\phi_{\mathbf{p}} + \frac{\mathbf{q}\mathbf{N}_{\mathbf{a}}}{2\varepsilon_{\mathbf{s}}}\mathbf{x}_{\mathbf{po}}^{2} = \phi_{\mathbf{n}} - \frac{\mathbf{q}\mathbf{N}_{\mathbf{d}}}{2\varepsilon_{\mathbf{s}}}\mathbf{x}_{\mathbf{no}}^{2}$$

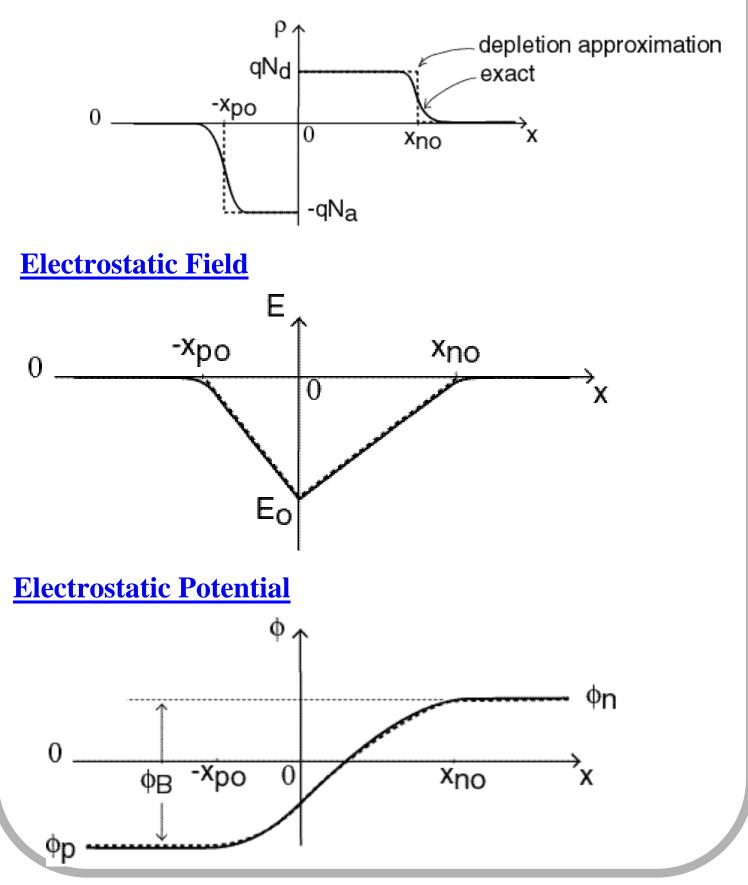
Two equations with two unknowns — obtain solution:

$$\mathbf{x}_{no} = \sqrt{\frac{2\varepsilon_s \phi_B N_a}{q(N_a + N_d)N_d}} \qquad \mathbf{x}_{po} = \sqrt{\frac{2\varepsilon_s \phi_B N_d}{q(N_a + N_d)N_a}}$$

Now problem is completely solved!

Solution Summary

Space Charge Density



Other results:

Width of the space charge region:

$$\mathbf{x}_{do} = \mathbf{x}_{po} + \mathbf{x}_{no} = \sqrt{\frac{2\epsilon_s \phi_B (\mathbf{N}_a + \mathbf{N}_d)}{q \mathbf{N}_a \mathbf{N}_d}}$$

Field at the metallurgical junction:

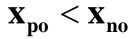
$$\left|\mathbf{E}_{\mathbf{o}}\right| = \sqrt{\frac{2\mathbf{q}\boldsymbol{\phi}_{\mathbf{B}}\mathbf{N}_{\mathbf{a}}\mathbf{N}_{\mathbf{d}}}{\boldsymbol{\varepsilon}_{\mathbf{s}}\left(\mathbf{N}_{\mathbf{a}} + \mathbf{N}_{\mathbf{d}}\right)}}$$

Three Special Cases

• Symmetric junction: $N_a = N_d$

$$\mathbf{X}_{\mathbf{po}} = \mathbf{X}_{\mathbf{no}}$$

• Asymmetric junction: $N_a > N_d$



Strongly asymmetric junction
 – p⁺n junction: N_a >> N_d

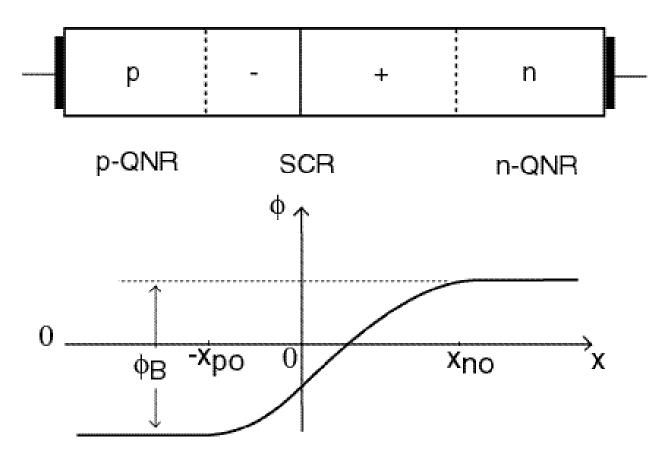
$$x_{po} \ll x_{no} \approx x_{do} \approx \sqrt{\frac{2\varepsilon_s \phi_B}{qN_d}}$$

$$|E_o| \approx \sqrt{\frac{2q\phi_B N_d}{\varepsilon_s}}$$

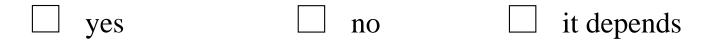
The lightly-doped side controls the electrostatics of the pn junction

4. Contact Potential

Potential distribution in thermal equilibrium so far:

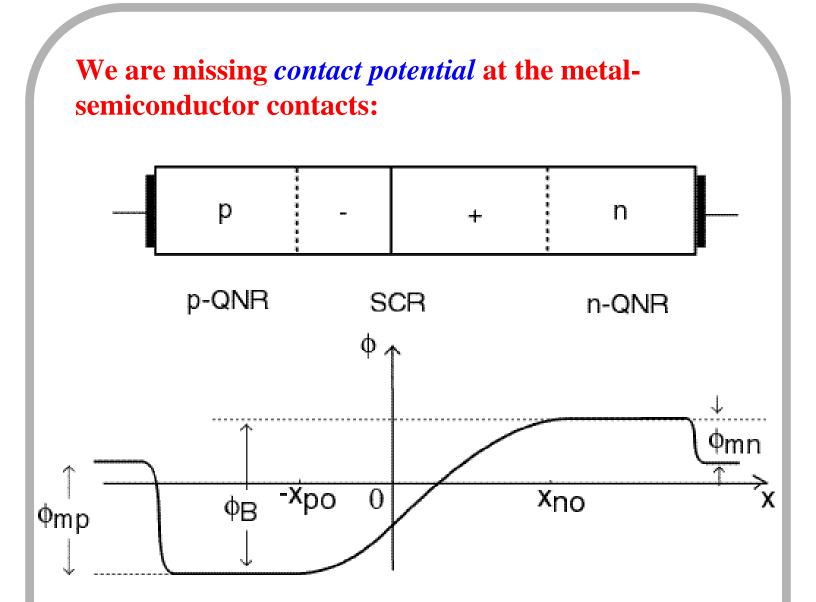


Question 1: If I apply a voltmeter across the pn junction diode, do I measure ϕ_B ?



Question 2: If I short terminals of pn junction diode, does current flow on the outside circuit?

🗌 yes	no no	□ sometimes



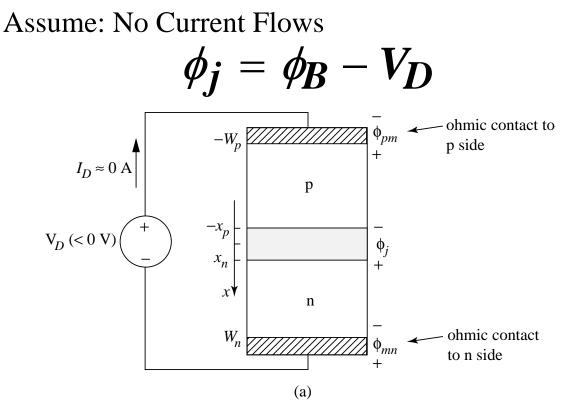
Metal-semiconductor contacts: junction of dissimilar materials

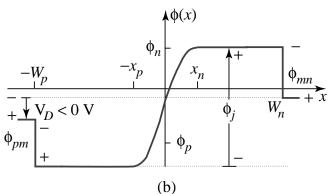
 \Rightarrow built-in potentials at contacts ϕ_{mn} and ϕ_{mp} .

Potential difference across structure must be zero \Rightarrow Cannot measure ϕ_B .

$$\phi_{\boldsymbol{B}} = \left|\phi_{mn}\right| + \left|\phi_{mp}\right|$$

5. PN Junction-Reverse Bias





Same Analysis applies:

Substitute

$$x_{do} = x_{po} + x_{no} = \sqrt{\frac{2\varepsilon_s (\phi_B - V_D)(N_a + N_d)}{qN_a N_d}}$$

What did we learn today?

Summary of Key Concepts

- Electrostatics of pn junction in equilibrium
 - A space-charge region surrounded by two quasi-neutral regions formed.
- To first order, carrier concentrations in space-charge region are much smaller than the doping level
 - \Rightarrow can use *Depletion Approximation*
- From contact to contact, there is no potential buildup across the pn junction diode
 - Contact potential(s).