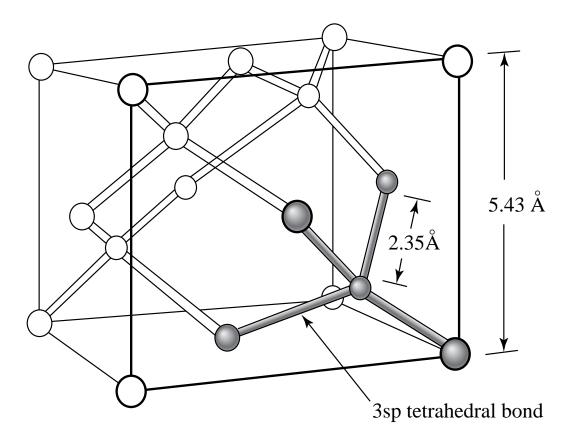
Lecture 2 Semiconductor Physics (I)

Outline

- Intrinsic bond model : electrons and holes
- Generation and recombination
- Intrinsic semiconductor
- Doping: Extrinsic semiconductor
- Charge Neutrality

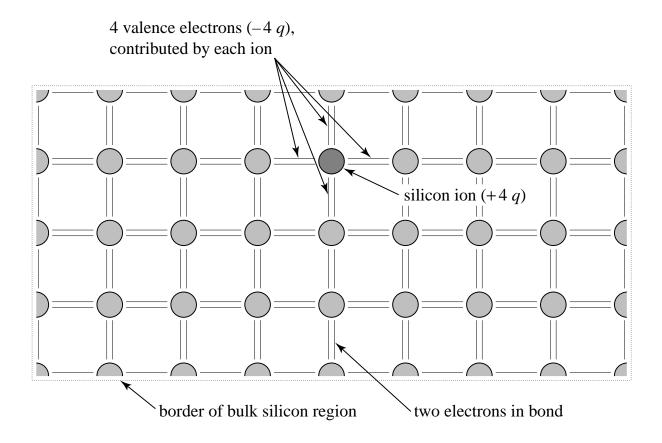
Reading Assignment:

Howe and Sodini; Chapter 2. Sect. 2.1-2.3


1. Silicon bond model: electrons and holes

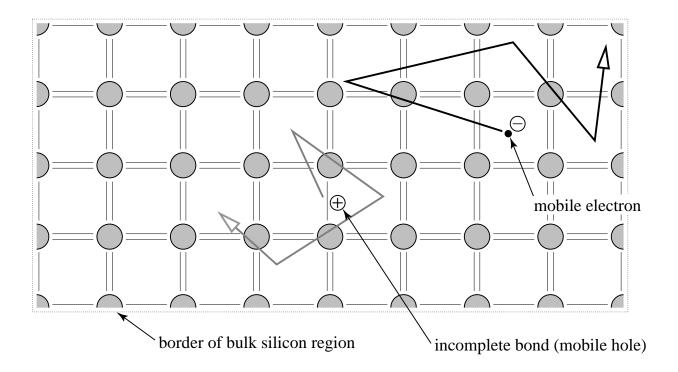
Si is Column IV of the periodic table:

	IIIA	IVA	VA	VIA
	B	C	N	о В
IIB	AI	Si	P	S ¹⁶
Zn ³⁰	Ga	Ge	AS	se
Cd	49 In	₅₀ Sn	⁵¹ Sb	Te


- Electronic structure of silicon atom:
 - 10 core electrons (tightly bound)
 - 4 valence electrons (loosely bound, responsible for most of the chemical properties
- Other semiconductors:
 - Ge, C (diamond form)
 - GaAs, InP, InGaAs, InGaAsP, ZnSe, CdTe (on the average, 4 valence electrons per atom)

Silicon crystal structure

- Diamond lattice: atoms tetrahedrally bonded by sharing valence electrons
 - covalent bonding
- Each atom shares 8 electrons
 - low energy situation
- Si atomic density : $5 \times 10^{22} \text{ cm}^{-3}$


Simple "flattened" model of Si crystal

At 0K:

- All bonds are satisfied
 - \Rightarrow all valence electrons engaged in bonding
- No "free" electrons

At finite temperature

- Finite thermal energy
- Some bonds are broken
- "free" electrons
 - Mobile negative charge, $-1.6 \times 10^{-19} \text{ C}$
- "free" holes
 - Mobile positive charge, $+1.6 \times 10^{-19} \text{ C}$

Caution: picture is misleading!

Electrons and holes in semiconductors are "fuzzier": they span many atomic sites

A few definitions:

- In 6.012, "electron' means free electron
- Not concerned with bonding electrons or core electrons
- Define:
 - $n \equiv (\text{free}) \text{ electron concentration } [\text{cm}^{-3}]$
 - $p \equiv hole concentration [cm^{-3}]$

2. Generation and Recombination

<u>GENERATION</u>=break-up of covalent bond to form electron and hole pairs

- Requires energy from thermal or optical sources (or external sources)
- Generation rate: $\mathbf{G} = \mathbf{G}(\mathbf{th}) + \mathbf{G}_{\mathbf{opt}} + \dots [\mathbf{cm}^{-3} \bullet \mathbf{s}^{-1}]$
- In general, atomic density >> n, p \Rightarrow

$$\mathbf{G} \neq \mathbf{f}(\mathbf{n},\mathbf{p})$$

- supply of breakable bonds virtually inexhaustible

<u>RECOMBINATION</u>=formation of covalent bond by bringing together electron and hole

- Releases energy in thermal or optical form
- Recombination rate: $\mathbf{R} = [\mathbf{cm}^{-3} \bullet \mathbf{s}^{-1}]$
- 1 recombination event requires 1 electron + 1 hole $\Rightarrow R \propto n \bullet p$

Generation and recombination most likely at surfaces where periodic crystalline structure is broken

3. Intrinsic semiconductor

THERMAL EQUILIBRIUM

Steady state + absence of external energy sources

Generation rate in thermal equilibrium: $G_o = f(T)$

Recombination rate in thermal equilibrium: $R_o \propto n_o \bullet p_o$

In thermal equilibrium: Every process and its inverse must be EQUAL

$$G_{o}(T) = R_{o} \Rightarrow n_{o}p_{o} = k_{o}G_{o}(T)$$

$$n_{o}p_{o} = n_{i}^{2}(T)$$
Only function of T
$$n_{i} \equiv intrinsic \ carrier \ concentration \ [cm^{-3}]$$

In Si at 300 K ("room temperature"): $n_i \approx 1 \times 10^{10} \text{ cm}^{-3}$ In a sufficiently pure Si wafer at 300K ("intrinsic semiconductor):

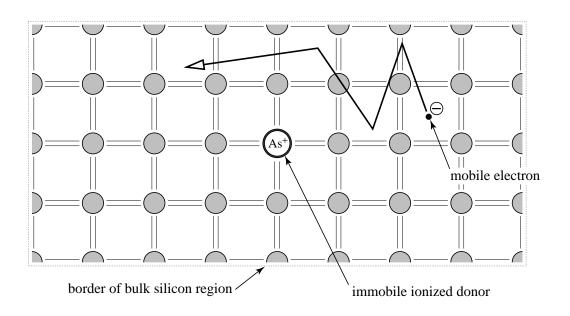
$$\boldsymbol{n_o} = \boldsymbol{p_o} = \boldsymbol{n_i} \approx 1 \times 10^{10} \ \boldsymbol{cm}^{-3}$$

n_i is a very strong function of temperature

$$\Gamma \uparrow \Rightarrow n_i'$$

4. Doping

Doping = engineered introduction of foreign atoms to modify semiconductor electrical properties


A. DONORS:

- Introduce electrons to semiconductors (but not holes)
- For Si, group V elements with 5 valence electrons (As, P, Sb)

	IIIA	IVA	VA	VIA
	5	6	7	- 8
	В	С	Ν	0
	- 13	14	15	16
IIB	AI	Si	Ρ	S
30	31	32	33	34
Zn	Ga	Ge	As	Se
48	49	50	51	52
Cd	In	Sn	Sb	Те

Doping: Donors Cont'd...

- 4 electrons participate in bonding
- 5th electron easy to release \Rightarrow
 - at room temperature, each donor releases 1
 electron that is available for conduction
- Donor site become positively charged (fixed charge)

Define:

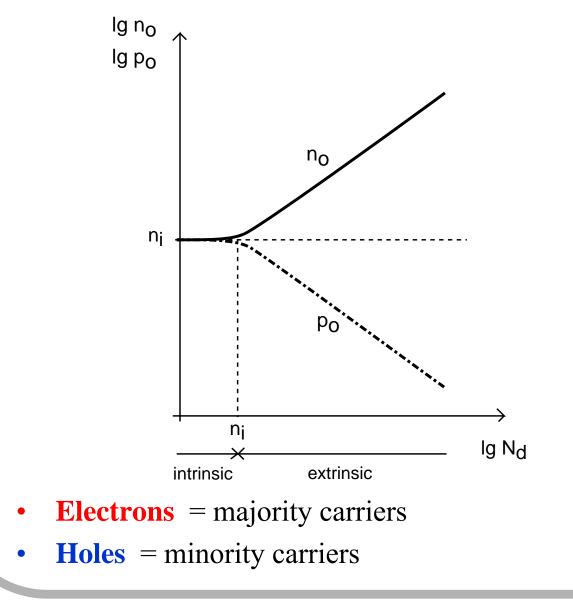
 $N_d \equiv \text{donor concentration } [\text{cm}^{-3}]$

- If $N_d \ll n_i$, doping is irrelevant
 - Intrinsic semiconductor $\rightarrow n_0 = p_0 = n_i$

Doping: Donors Cont'd...

- If $N_d >> n_i$, doping controls carrier concentration
 - Extrinsic semiconductor \Rightarrow

$$\vec{\mathbf{n}}_0 = \mathbf{N}_{\mathbf{d}} \qquad \mathbf{p}_{\mathbf{o}} = \frac{\mathbf{n}_{\mathbf{i}}^2}{\mathbf{N}_{\mathbf{d}}}$$


Note: $n_0 >> p_0$: n-type semiconductor

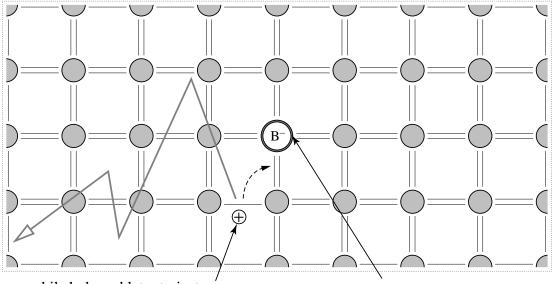
Example:

 $N_d = 10^{17} \text{ cm}^{-3} \rightarrow n_o = 10^{17} \text{ cm}^{-3}$, $p_o = 10^3 \text{ cm}^{-3}$

In general:

 $N_d \approx 10^{15} - 10^{20} \text{ cm}^{-3}$

Doping : Acceptors


A. ACCEPTORS:

- Introduce holes to semiconductors (but not electrons)
- For Si, group III elements with 3 valence electrons (B)

	IIIA	IVA	VA	VIA
	5	6	7	- 8
	В	С	Ν	0
	- 13	14	15	16
IIB	AI	Si	Ρ	S
30	31	32	33	34
Zn	Ga	Ge	As	Se
48	49	50	51	52
Cd	In	Sn	Sb	Те

Doping: Acceptors Cont'd...

- 3 electrons participate in bonding
- 1 bonding site "unsatisfied" making it easy to "accept" neighboring bonding electron to complete all bonds⇒
 - at room temperature, each acceptor "releases" 1 hole that is available for conduction
- Acceptor site become negatively charged (fixed charge)

mobile hole and later trajectory

immobile negatively ionized acceptor

Define:

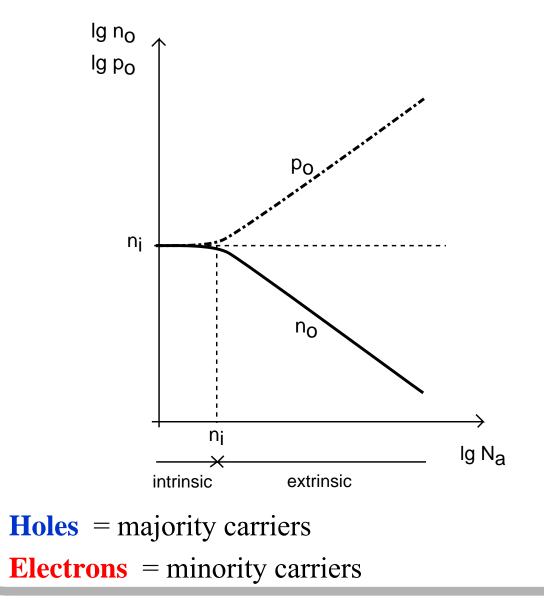
 $N_a \equiv acceptor \ concentration \ [cm^{-3}]$

- If $N_a \ll n_i$, doping is irrelevant
 - Intrinsic semiconductor $\rightarrow n_0 = p_0 = n_i$

Doping: Acceptors Cont'd...

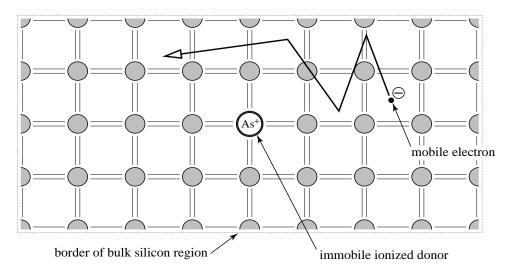
- If $N_a >> n_i$, doping controls carrier conc.
 - Extrinsic semiconductor \Rightarrow

$$n_o = \frac{n_i^2}{N_a}$$


 $p_o = N_o$

Note: $p_o >> n_o$: p-type semiconductor

Example:


$$N_a = 10^{17} \text{ cm}^{-3} \rightarrow p_o = 10^{17} \text{ cm}^{-3}, n_o = 10^3 \text{ cm}^{-3}$$

In general: $N_a \approx 10^{15} - 10^{20} \text{ cm}^{-3}$

6.012 Lecture 2

5. Charge Neutrality

- The semiconductor remains charge neutral even when it has been doped
 - \Rightarrow Overall charge neutrality must be satisfied
- In general:

$$\rho = q(\mathbf{p}_{o} - \mathbf{n}_{o} + \mathbf{N}_{d} - \mathbf{N}_{a})$$

Let us examine this for $N_d = 10^{17}$ cm⁻³, $N_a = 0$

We solved this in an earlier example:

$$n_o = N_d = 10^{17} cm^{-3}, \quad p_o = \frac{n_i^2}{N_d} = 10^3 cm^{-3}$$

Hence:

$$\rho \neq 0 !!$$

What is wrong??

Charge Neutrality cont'd...

Nothing wrong!

We just made the approximation when we assumed that $n_o = N_d$

We should really solve the following system of equations (for $N_a=0$):

$$p_o - n_o + N_d = 0$$
$$n_o p_o = n_i^2$$

Solution and discussion tomorrow in recitation.

Error in most practical circumstances too small to matter!

Summary

Why are IC's made out of Silicon?

SILICON IS A SEMICONDUCTOR a very special class of materials

- Two types of "carriers" (mobile charge particles):
 - electrons and holes
- Carrier concentrations can be controlled over many orders of magnitude by addition "dopants"
 - selected foreign atoms
- Important Equations under Thermal Equilibrium conditions
 - Charge Neutrality
 - Law of Mass Action

$$p_o - n_o + N_d - N_a = 0$$
$$n_o p_o = n_i^2$$