# Lecture 16 The pn Junction Diode (III)

### **Outline**

- Small-signal equivalent circuit model
- Carrier charge storage
  - -Diffusion capacitance

# **Reading Assignment:**

Howe and Sodini; Chapter 6, Sections 6.4 - 6.5

### **I-V Characteristics**

Diode Current equation:

$$I = I_o \left[ e^{\left( \frac{V}{V_{th}} \right)} - 1 \right]$$



# 2. Small-signal equivalent circuit model

Examine effect of small signal adding to forward bias:

$$I + i = I_o \left| e^{\left(\frac{q(V+v)}{kT}\right)} - 1 \right| \approx I_o e^{\left(\frac{q(V+v)}{kT}\right)}$$

If v small enough, linearize exponential characteristics:

$$I + i \approx I_o \left[ e^{\left(\frac{qV}{kT}\right)} e^{\left(\frac{qv}{kT}\right)} \right] \approx I_o \left[ e^{\left(\frac{qV}{kT}\right)} \left(1 + \frac{qv}{kT}\right) \right]$$

$$= \boldsymbol{I_o} e^{\left(\frac{qV}{kT}\right)} + \boldsymbol{I_o} e^{\left(\frac{qV}{kT}\right)} \frac{qv}{kT}$$

Then:

$$i = \frac{qI}{kT} \bullet v$$

From a small signal point of view. Diode behaves as *conductance* of value:

$$g_d = \frac{qI}{kT}$$

### Small-signal equivalent circuit model



g<sub>d</sub> depends on bias. In forward bias:

$$g_d = \frac{qI}{kT}$$

g<sub>d</sub> is linear in diode current.

## Capacitance associated with depletion region:



Depletion or junction capacitance:

$$C_{j} = C_{j}(V_{D}) = \frac{dq_{J}}{dv_{D}}\bigg|_{V_{D}}$$

$$C_{j} = A \sqrt{\frac{q \varepsilon_{s} N_{a} N_{d}}{2(N_{a} + N_{d})(\phi_{B} - V_{D})}}$$

# Small-signal equivalent circuit model



can rewrite as:

$$C_{j} = A \sqrt{\frac{q \varepsilon_{s} N_{a} N_{d}}{2(N_{a} + N_{d}) \phi_{B}}} \bullet \sqrt{\frac{\phi_{B}}{(\phi_{B} - V_{D})}}$$

or, 
$$C_{j} = \frac{C_{jo}}{\sqrt{1 - \frac{V_{D}}{\phi_{B}}}}$$

Under Forward Bias assume  $V_D \approx \frac{\varphi_B}{2}$ 

$$C_j = \sqrt{2}C_{jo}$$

 $C_{io} \equiv zero$ -voltage junction capacitance

# 3. Charge Carrier Storage: diffusion capacitance

What happens to majority carriers?

Carrier picture thus far:



If QNR minority carrier concentration ↑ but majority carrier concentration unchanged? ⇒ quasi-neutrality is violated.

### Quasi-neutrality demands that at every point in QNR:

### excess minority carrier concentration = excess majority carrier concentration



Mathematically:

$$p_n(x) - p_{no} = n_n(x) - n_{no}$$

Define integrated carrier charge:

$$q_{p_n} = qA \frac{1}{2} (p_n(x_n) - p_{no}) \bullet (W_n - x_n)$$

$$= qA \frac{W_n - x_n}{2} \frac{n_i^2}{N_d} \left[ e^{\frac{qV}{kT}} - 1 \right] = -q_{N_n}$$

#### Now examine small increase in V:



Small increase in  $V \Rightarrow$  small increase in  $q_{Pn} \Rightarrow$  small increase in  $|q_{Nn}\>|$ 

Behaves as capacitor of capacitance:

$$C_{dn} = \frac{dq_{Pn}}{dV}\bigg|_{V_D} = qA \frac{W_n - x_n}{2} \frac{n_i^2}{N_d} \frac{q}{kT} e^{\left[\frac{qV_D}{kT}\right]}$$

Similarly for p-QNR:

$$C_{dp} = \frac{dq_{Np}}{dV}\bigg|_{V_D} = qA \frac{W_p - x_p}{2} \frac{n_i^2}{N_a} \frac{q}{kT} e^{\left[\frac{qV_D}{kT}\right]}$$

Both capacitors sit in *parallel*  $\Rightarrow$  total diffusion capacitance:

$$C_d = C_{dn} + C_{dp}$$

### Complete small-signal equivalent circuit model for diode:



Bias dependence of  $C_j$  and  $C_d$ :



• C<sub>j</sub> dominates in reverse bias and small forward bias

$$\propto \frac{1}{\sqrt{\phi_B - V}}$$

• C<sub>d</sub> dominates in strong forward bias

$$\propto e^{\left\lfloor \frac{qV}{kT} \right\rfloor}$$

# What did we learn today?

### **Summary of Key Concepts**

Large and Small-signal behavior of diode:

• Diode Current:

$$I = I_o(e^{\left[\frac{qV}{kT}\right]} - 1)$$

- *Conductance*: associated with current-voltage characteristics
  - g<sub>d</sub> ∝ I in forward bias,
  - g<sub>d</sub> negligible in reverse bias
- *Junction capacitance*: associated with charge modulation in depletion region

$$C_j \propto \frac{1}{\sqrt{\phi_B - V}}$$

• *Diffusion capacitance*: associated with charge storage in QNRs to maintain quasi-neutrality.

$$C_d \propto e^{\left\lfloor rac{qV}{kT} 
ight
floor}$$