Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.012

Microelectronic Devices and Circuits Spring 2007 February 21, 2007 - Homework #2

February 21, 2007 - Homework # Due - February 28, 2007

Problem 1

Fill in the values for the maximum absolute electric field, built in voltage, and depletion width for the following pn junctions. Assume thermal equilibrium.

$N_d \mathrm{cm}^{-3}$	$N_a \mathrm{cm}^{-3}$	x_{no} nm	x_{po} nm	E_o kV/cm	φ _{bi} mV
10^{15}	10^{15}	623	623	9.6	600
10^{16}	10^{17}	303	30.3	46.8	780
10^{16}	10^{18}	328	3.28	50.7	840

$$\begin{aligned} &\phi_{bi} = 60 \text{ mV } \log(N_d N_a/n_i^2) \\ &x_p = [(2 \varepsilon_{\rm s} \phi_{bi} N_d)(q N_a (N_a + N_d))^{-1}]^{0.5} \\ &x_n = x_p N_d/N_d \\ &E = q x_n N_d/\varepsilon_{\rm s} \end{aligned}$$

Compare these values to Example 3.4 in the text and figure out what resulted in the differences.

Problem 2

We have a PN junction with the p-type side doped with $N_a = 10^{17}$ cm⁻³ and the n-type side doped with $N_d = 10^{18}$ cm⁻³. Assume thermal equilibrium.

- a) Compute the built in potential ϕ_{bi} .
- b) Calculate the depletion width on each side: x_{n0} and x_{p0} .
- c) Plot the charge density, electric field, and electric potential across the PN junction. Please follow the graph convention in Howe & Sodini.

a)
$$\phi_{bi} = v_{th} \ln(N_a N_d / n_i^2) = \mathbf{0.898 \ V}$$

b) Using Eq 3.55
 $x_{n0} = [(2 \times 1.035 \times 10^{-12} \times .898 \times 10^{17})(1.6 \times 10^{-19} \times 10^{18} \times (10^{17} + 10^{18}))^{-1}]^{0.5} = \mathbf{1.03} \times \mathbf{10^{-6} \ cm}$
Using Eq 3.52
 $x_{p0} = \mathbf{1.03} \times \mathbf{10^{-5} \ cm}$

c)
$$E_{max} = -qN_ax_{p0}/\epsilon_s = -159 \text{ kV/cm}$$

 $\phi_n = v_{th} \ln(N_d/n_i) = .479$
 $\phi_p = v_{th} \ln(N_a/n_i) = -.419$

$$\phi(0) = \phi_n - E_{max} x_{n0}/2 = .397$$

In addition to x_{p0} and x_{n0} , these are the only six numbers needed for the graphs.

Charge Density

Potential

Problem 3

Given $x_{no} = 100$ nm, $\phi_{bi} = 780$ mV, $N_d = 10^{17}$ cm⁻³. The voltage V varies from 0 to +3 volts.

- a) Plot the amount of charge stored on the n-side versus voltage V.
- b) What is C_{jo} , the depletion capacitance at zero bias? Plot C_j versus voltage V.

a)
$$q_o = q x_{no} N_d = 1.6x10^{-7} \text{ coulombs/cm}^2$$

 $q(V) = q_o (1+(V/\phi_{bi}))^{0.5}$

b)
$$C_{jo} = q x_{no} N_d / 2\phi_{bi} = 10^{-7} \text{ farads/cm}^2$$

 $C_j(V) = C_{jo}(1+(V/\phi_{bi}))^{-5}$

Problem 4

For the given set up:

- a) Plot the electric field versus distance. Follow the convention in H&S. Set the oxide and p-type interface as x = 0.
- b) Plot the charge density versus distance.

a)
$$\phi_{n+} = 550 \text{ mV}$$
 and $\phi_p = -60 \text{ mV} \log(10^{16}/10^{10}) = -360 \text{ mV}$

There is a total voltage drop of 910 mV across the MOS. We know there will be charge at the boundary of the oxide and the n+ silicon, no charge in the oxide, and a constant charge density of qN_a in the depleted region of the p-type silicon. Since the electric field is proportional to the integral of charge it will look like this.

The field decreases at a linear rate in the silicon because the charge density is constant. Using $E = qN_aX_d/\epsilon_s$, we know $X_d = \epsilon_s Eo/3qN_a$. Since the voltage is the negative integral of the electric field we know that:

.91 = Eo x tox + $\frac{1}{2}$ x X_d x Eo/3 (area of a triangle) = Eo x tox + Eo² ϵ_s /18q N_a Using the quadratic formula, Eo = 157.7 kV/cm and X_d = 340 nm.

b) To maintain charge neutrality, the charge on the metal surface is the opposite of the total charge in the silicon. The total charge in the silicon is $-qN_aX_d = -5.44 \times 10^{-8}$ coulombs cm⁻².

