Problem 1

Fill in the values for the maximum absolute electric field, built in voltage, and depletion width for the following pn junctions. Assume thermal equilibrium.

$N_d \mathrm{cm}^{-3}$	$N_a \mathrm{cm}^{-3}$	x_{no} nm	x_{po} nm	$E_o \mathrm{kV/cm}$	$\phi_{bi} mV$
10^{15}	10^{15}				
10^{16}	10^{17}				
10^{16}	10^{18}				

Problem 2

We have a PN junction with the p-type side doped with $N_a = 10^{17}$ cm⁻³ and the n-type side doped with $N_d = 10^{18}$ cm⁻³. Assume thermal equilibrium.

- a) Compute the built in potential ϕ_{bi} .
- b) Calculate the depletion width on each side: x_{n0} and x_{p0} .
- c) Plot the charge density, electric field, and electric potential across the PN junction. Please follow the graph convention in Howe & Sodini.

Problem 3

Given $x_{no} = 100$ nm, $\phi_{bi} = 780$ mV, $N_d = 10^{17}$ cm⁻³. The voltage V varies from 0 to +3 volts.

- a) Plot the amount of charge stored on the n-side versus voltage V.
- b) What is C_{jo} , the depletion capacitance at zero bias? Plot C_j versus voltage V.

Problem 4

For the given set up:

- a) Plot the electric field versus distance. Follow the convention in H&S. Set the oxide and p-type interface as x = 0.
- b) Plot the charge density versus distance.