Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.012 Microelectronic Devices and Circuits Spring 2007

Homework #7 – Due May 4, 2007

Problem 1:

Common-Emitter	Common-Source
I _{SUP} =100uA	I _{SUP} =100uA
$R_{\rm S}=1k\Omega$	$R_{s}=1k\Omega$
$R_L=10k\Omega$	$R_L=10k\Omega$
$I_{S}=10^{-15}A$	V _{Tn} =1V
$\beta_{\rm F} = \beta_{\rm o} = 100$	$\mu_n C_{ox} = 50 u A / V^2$
V _A =25V	$\lambda_n = 0.1 V^{-1} @L = 1.5 um$
$r_{oc} = \infty$	r _{oc} =∞

For the Common-Emitter Amplifier:

- a.) Find V_{BIAS} such that $V_{OUT}=0V$
- b.) Find the input resistance R_{in}.
- c.) Find the unloaded voltage gain A_v.
- d.) Find the output resistance Rout.
- e.) Draw the two-port model and find the loaded voltage gain v_{out}/v_s .

For the Common-Source Amplifier:

- f.) Choose the length L for the NMOS such that the Common-Source Amplifier has the same output resistance as the Common-Emitter Amplifier.
- g.) Choose the width W for the NMOS such that the Common-Source Amplifier has the same loaded voltage gain as the Common-Emitter Amplifier.
- h.) Find V_{BIAS} such that $V_{OUT}=0V$ for the Common-Source Amplifier designed in parts f and g.

Problem 2:

Device Parameters	$I_{\rm S}=10^{-15}{\rm A}$
I _{SUP} =200uA	$\beta_{\rm F} = \beta_{\rm o} = 100$
$R_{\rm S}=5k\Omega$	V _A =25V
$R_L=50k\Omega$	r _{oc} =∞

The DC voltage supply at the base of the npn transistor has a small-signal component added to it which represents feedthrough from other signal lines.

- a.) Find i_{out}/i_s for $v_b=0V$.
- b.) Find i_{out}/v_b for $i_s=0A$.
- c.) Let i_{out1} be the portion of i_{out} due to the signal source i_s . Let i_{out2} be the portion of i_{out} due to the signal source v_b . Find the ratio i_{out1}/i_{out2} .
- d.) State whether the value for I_{SUP} , R_S , and R_L should increase, decrease, or stay the same to increase the ratio calculated in part c.

Problem 3:

Device Parameters	
I _{SUP} =200uA	W/L=100/2
$R_{s}=1k\Omega$	$\mu_n C_{ox} = 50 u A / V^2$
$R_L=100k\Omega$	$\gamma_n=0.5V^{1/2}$
r _{oc} =∞	$V_{T0n}=0.7V$
$2\Phi_{\rm p}=-0.8{ m V}$	$\lambda_n = 0.05 V^{-1}$

In this problem, we want to compare the small-signal performance and output voltage swing of an NMOS CD amplifier when the backgate terminal is shorted to the source $(V_{BS}=0V)$ and when it is tied to the most negative supply $(V_B=-2.5V)$.

- a.) Given I_{SUP} =200uA and V_B =-2.5V, find V_{BIAS} such that V_{OUT} =0V.
- b.) What is the maximum and minimum V_{OUT} possible while still keeping the NMOS device in the constant-current region? Assume the current source supply requires at least 0.5V across it.
- c.) What is the overall voltage gain, v_{out}/v_s including the effect of R_L ?
- d.) Repeat (a)-(c) for $V_{BS}=0V$.