Problem 1

An npn transistor with area $A_E = 2.5 \ \mu m \ x \ 2.5 \ \mu m$ is biased in the forward active region, with the collector current $I_C = 50 \ \mu A$. The emitter, base and collector dimensions and doping are:

 $N_{dE} = 10^{19} \text{ cm}^{-3}$, $W_E = 0.3 \ \mu\text{m}$, $N_{aB} = 10^{17} \text{ cm}^{-3}$, $W_B = 0.25 \ \mu\text{m}$, and $N_{dC} = 10^{16} \text{ cm}^{-3}$, $W_C = 1.5 \ \mu\text{m}$.

- A) Draw a picture of the minority carrier concentration in the emitter and base (identify the minority carrier concentration at the base and emitter edges).
- B) Find the base-emitter bias $V_{BE.}$
- C) Find the base current $I_{B.}$
- D) For the npn BJT biased as above, given that $V_{An} = 25$ V, find the transconductance g_m , the input resistance r_{π} , and the output resistance r_o .
- E) For the npn BJT biased as above, given that the emitter-base depletion region width is $x_{BE} = 0.05 \ \mu m$, what is the minority electron charge storage in the base $Q_{NB}(VBE)$ at this operating point?
- F) What is C_{π} at this operating point?

Problem 2

In this problem we will consider an important development of the late 1980s, the SiGe alloy base BJT. This Hetero Bipolar Transistor (HBT) is usually fabricated as an npn BJT with a base made of SiGe to increase the intrinsic carrier concentration in the base and with Si collector and emitter. The emitter, base, and collector dimensions are:

 $N_{dE} = 5 \times 10^{19} \text{ cm}^{-3}$, $W_E = 0.25 \ \mu\text{m}$, $N_{aB} = 10^{18} \text{ cm}^{-3}$, $W_B = 0.25 \ \mu\text{m}$, and $N_{dC} = 10^{17} \text{ cm}^{-3}$, $W_C = 1.5 \ \mu\text{m}$. Note that at room temperature the intrinsic carrier concentration of SiGe is $n_{iSiGe} = 5 \times 10^{10} \text{ cm}^{-3}$.

For this problem assume that the concentration of Ge is low. Therefore the mobility and the dielectric constant of the SiGe base film remain unchanged from that of Si.

- A) Find α_F and the forward active current gain β_F for the npn SiGe HBT (SiGe Base Transistor) and npn BJT (Si Base) at room temperature.
- B) What is the ratio between forward active current gains for the npn SiGe HBT and the corresponding npn BJT?
- C) Determine the base doping of the npn BJT that will yield the same value of β_F as in the npn SiGe HBT.

Problem 3

A p^+np bipolar transistor has the geometry and doping profile described below. For all the following questions the BJT is operating in a common-emitter mode in the forward active region.

BJT Data:

 $D_p = 5 \text{ cm}^2/\text{s}; D_n = 10 \text{ cm}^2/\text{s}; W_E = 500 \text{ nm}; A = 25 \text{ }\mu\text{m}^2; N_{aE} = 10^{19} \text{ cm}^{-3}; N_{dB} = 10^{17} \text{ cm}^{-3}; N_{aC} = 10^{16} \text{ cm}^{-3}.$

- A) We want the current gain β_F to be 100, what should be the value for the base thickness W_B ? Neglect depletion region widths.
- B) What is the saturation current I_S for the emitter-base p-n diode?
- C) What should be the EB voltage to obtain a collector current of $I_C = 100 \mu A$?
- D) What is the transconductance at $I_C = 100 \ \mu A$?
- E) What is the capacitance C_{π} at $I_{C} = 100 \ \mu A$?
- F) What is the imput resistance at $I_C = 100 \ \mu A$?
- G) What is the output resistance at $I_C = 100 \ \mu A$ given an Early Voltage $V_A = 30V$?
- H) In forward active regime find the frequency limit set by the base diffusion transit time?

Problem 4

The figure below shows six possible ways of connecting an npn bipolar transistor that may yield a diode-like behavior. Using the Ideal Non-Linear Hybrid- π Model, write the I-V characteristics of the two-terminal device in each configuration. Express your results as a function of I_S, β_F , and β_R .

